Properties

Label 20.0.56933553290...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{10}\cdot 11^{18}$
Root discriminant $38.71$
Ramified primes $2, 5, 11$
Class number $124$ (GRH)
Class group $[124]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7921, 0, -1560, 0, 554, 0, 833, 0, 1721, 0, 1858, 0, 1230, 0, 502, 0, 124, 0, 17, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 17*x^18 + 124*x^16 + 502*x^14 + 1230*x^12 + 1858*x^10 + 1721*x^8 + 833*x^6 + 554*x^4 - 1560*x^2 + 7921)
 
gp: K = bnfinit(x^20 + 17*x^18 + 124*x^16 + 502*x^14 + 1230*x^12 + 1858*x^10 + 1721*x^8 + 833*x^6 + 554*x^4 - 1560*x^2 + 7921, 1)
 

Normalized defining polynomial

\( x^{20} + 17 x^{18} + 124 x^{16} + 502 x^{14} + 1230 x^{12} + 1858 x^{10} + 1721 x^{8} + 833 x^{6} + 554 x^{4} - 1560 x^{2} + 7921 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(56933553290160450365440000000000=2^{20}\cdot 5^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(220=2^{2}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{220}(1,·)$, $\chi_{220}(131,·)$, $\chi_{220}(51,·)$, $\chi_{220}(129,·)$, $\chi_{220}(201,·)$, $\chi_{220}(141,·)$, $\chi_{220}(81,·)$, $\chi_{220}(211,·)$, $\chi_{220}(149,·)$, $\chi_{220}(151,·)$, $\chi_{220}(29,·)$, $\chi_{220}(199,·)$, $\chi_{220}(159,·)$, $\chi_{220}(171,·)$, $\chi_{220}(109,·)$, $\chi_{220}(179,·)$, $\chi_{220}(181,·)$, $\chi_{220}(119,·)$, $\chi_{220}(59,·)$, $\chi_{220}(189,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{89} a^{11} + \frac{11}{89} a^{9} + \frac{44}{89} a^{7} - \frac{12}{89} a^{5} - \frac{34}{89} a^{3} + \frac{11}{89} a$, $\frac{1}{17711} a^{12} - \frac{6753}{17711} a^{10} + \frac{3248}{17711} a^{8} - \frac{6420}{17711} a^{6} - \frac{1636}{17711} a^{4} + \frac{8021}{17711} a^{2} + \frac{47}{199}$, $\frac{1}{17711} a^{13} + \frac{13}{17711} a^{11} + \frac{6830}{17711} a^{9} + \frac{7908}{17711} a^{7} + \frac{5727}{17711} a^{5} + \frac{8220}{17711} a^{3} + \frac{7765}{17711} a$, $\frac{1}{17711} a^{14} + \frac{6064}{17711} a^{10} + \frac{1106}{17711} a^{8} + \frac{632}{17711} a^{6} - \frac{5934}{17711} a^{4} - \frac{7953}{17711} a^{2} - \frac{14}{199}$, $\frac{1}{17711} a^{15} + \frac{94}{17711} a^{11} + \frac{6280}{17711} a^{9} + \frac{3617}{17711} a^{7} - \frac{5138}{17711} a^{5} + \frac{206}{17711} a^{3} + \frac{3928}{17711} a$, $\frac{1}{17711} a^{16} + \frac{3466}{17711} a^{10} - \frac{608}{17711} a^{8} - \frac{3832}{17711} a^{6} - \frac{5409}{17711} a^{4} - \frac{6184}{17711} a^{2} - \frac{40}{199}$, $\frac{1}{17711} a^{17} + \frac{83}{17711} a^{11} - \frac{2399}{17711} a^{9} + \frac{6715}{17711} a^{7} - \frac{235}{17711} a^{5} + \frac{2572}{17711} a^{3} - \frac{5351}{17711} a$, $\frac{1}{17711} a^{18} - \frac{8652}{17711} a^{10} + \frac{2796}{17711} a^{8} + \frac{1295}{17711} a^{6} - \frac{3328}{17711} a^{4} + \frac{1924}{17711} a^{2} + \frac{79}{199}$, $\frac{1}{17711} a^{19} - \frac{95}{17711} a^{11} + \frac{8368}{17711} a^{9} + \frac{5872}{17711} a^{7} + \frac{254}{17711} a^{5} - \frac{5638}{17711} a^{3} - \frac{5108}{17711} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{124}$, which has order $124$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 281202.490766 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-5}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 10.0.685948419200000.1, 10.0.7368586534375.1, \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11Data not computed