Normalized defining polynomial
\( x^{20} - 10 x^{19} + 49 x^{18} - 156 x^{17} + 367 x^{16} - 692 x^{15} + 1106 x^{14} - 1548 x^{13} + 1927 x^{12} - 2150 x^{11} + 2157 x^{10} - 1936 x^{9} + 1537 x^{8} - 1068 x^{7} + 644 x^{6} - 332 x^{5} + 145 x^{4} - 54 x^{3} + 17 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56647250677292005851136=2^{40}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{1474} a^{19} + \frac{359}{1474} a^{18} - \frac{70}{737} a^{17} - \frac{113}{737} a^{16} + \frac{127}{737} a^{15} + \frac{86}{737} a^{14} - \frac{141}{737} a^{13} + \frac{261}{737} a^{12} - \frac{23}{1474} a^{11} - \frac{29}{134} a^{10} - \frac{291}{737} a^{9} - \frac{8}{737} a^{8} - \frac{31}{67} a^{7} - \frac{336}{737} a^{6} + \frac{14}{67} a^{5} - \frac{89}{737} a^{4} - \frac{681}{1474} a^{3} + \frac{711}{1474} a^{2} + \frac{2}{737} a - \frac{1}{737}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1301}{737} a^{19} - \frac{24719}{1474} a^{18} + \frac{115507}{1474} a^{17} - \frac{351475}{1474} a^{16} + \frac{396784}{737} a^{15} - \frac{721799}{737} a^{14} + \frac{1118173}{737} a^{13} - \frac{1519349}{737} a^{12} + \frac{1834687}{737} a^{11} - \frac{360409}{134} a^{10} + \frac{3838467}{1474} a^{9} - \frac{3299909}{1474} a^{8} + \frac{112700}{67} a^{7} - \frac{802046}{737} a^{6} + \frac{39912}{67} a^{5} - \frac{196939}{737} a^{4} + \frac{70645}{737} a^{3} - \frac{40383}{1474} a^{2} + \frac{9671}{1474} a - \frac{1519}{1474} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2917.10585152 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.1.15616.1, 10.0.238006829056.1, 10.0.3901751296.1, 10.2.14875426816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |