Normalized defining polynomial
\( x^{20} - 4 x^{19} + 11 x^{18} - 20 x^{17} + 38 x^{16} - 54 x^{15} + 108 x^{14} - 108 x^{13} + 250 x^{12} - 210 x^{11} + 448 x^{10} - 338 x^{9} + 722 x^{8} - 432 x^{7} + 963 x^{6} - 582 x^{5} + 766 x^{4} - 474 x^{3} + 463 x^{2} - 78 x + 229 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(566347765424228061530816512=2^{25}\cdot 71^{5}\cdot 311^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71, 311$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7620156013201649266407629743} a^{19} - \frac{183868795197931086264485798}{7620156013201649266407629743} a^{18} + \frac{2948220920156875542928808877}{7620156013201649266407629743} a^{17} - \frac{1048212111802318821799183928}{7620156013201649266407629743} a^{16} - \frac{2373897734486836215700942812}{7620156013201649266407629743} a^{15} - \frac{125256218954863615448762033}{7620156013201649266407629743} a^{14} + \frac{38811818558061659284608001}{129155186664434733328942877} a^{13} - \frac{3386807069652788433181910805}{7620156013201649266407629743} a^{12} - \frac{6091422914804985779827975}{15908467668479434794170417} a^{11} + \frac{993589296387270328538735119}{7620156013201649266407629743} a^{10} + \frac{1181905009098289719199290676}{7620156013201649266407629743} a^{9} + \frac{936068775274278471142935893}{7620156013201649266407629743} a^{8} - \frac{1676732964714133131363726251}{7620156013201649266407629743} a^{7} - \frac{3334251589741732227440591150}{7620156013201649266407629743} a^{6} + \frac{747158301683086747641562334}{7620156013201649266407629743} a^{5} - \frac{53001949576969204016904071}{7620156013201649266407629743} a^{4} + \frac{654812336447570272149859022}{7620156013201649266407629743} a^{3} + \frac{777212470596905739652513605}{7620156013201649266407629743} a^{2} + \frac{1753901555666263523851939202}{7620156013201649266407629743} a - \frac{631102412204543460183725083}{7620156013201649266407629743}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71269.5903616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 15000 |
| The 190 conjugacy class representatives for t20n462 are not computed |
| Character table for t20n462 is not computed |
Intermediate fields
| 4.0.2272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | $20$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $15{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $20$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $71$ | 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.10.5.1 | $x^{10} - 10082 x^{6} + 25411681 x^{2} - 115470678464$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 311 | Data not computed | ||||||