Normalized defining polynomial
\( x^{20} - 6 x^{19} + 22 x^{18} - 61 x^{17} + 147 x^{16} - 338 x^{15} + 780 x^{14} - 1782 x^{13} + 3658 x^{12} - 6414 x^{11} + 10114 x^{10} - 15538 x^{9} + 23243 x^{8} - 31374 x^{7} + 35592 x^{6} - 32603 x^{5} + 23544 x^{4} - 13072 x^{3} + 5366 x^{2} - 1501 x + 223 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(565522513762594615522033664=2^{16}\cdot 29^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{8555} a^{16} - \frac{833}{8555} a^{15} - \frac{1462}{8555} a^{14} + \frac{123}{8555} a^{13} + \frac{502}{8555} a^{12} + \frac{3903}{8555} a^{11} - \frac{255}{1711} a^{10} + \frac{2817}{8555} a^{9} - \frac{4051}{8555} a^{8} + \frac{1154}{8555} a^{7} - \frac{3528}{8555} a^{6} - \frac{1261}{8555} a^{5} - \frac{2664}{8555} a^{4} - \frac{4122}{8555} a^{3} + \frac{347}{1711} a^{2} + \frac{616}{1711} a - \frac{3572}{8555}$, $\frac{1}{8555} a^{17} - \frac{137}{1711} a^{15} - \frac{1202}{8555} a^{14} + \frac{3723}{8555} a^{13} - \frac{794}{1711} a^{12} + \frac{147}{1711} a^{11} - \frac{3571}{8555} a^{10} + \frac{3573}{8555} a^{9} + \frac{837}{1711} a^{8} - \frac{14}{295} a^{7} + \frac{1124}{8555} a^{6} - \frac{146}{295} a^{5} + \frac{2777}{8555} a^{4} - \frac{1336}{8555} a^{3} - \frac{882}{8555} a^{2} - \frac{202}{1711} a - \frac{1758}{8555}$, $\frac{1}{8555} a^{18} - \frac{333}{8555} a^{15} + \frac{1477}{8555} a^{14} - \frac{132}{8555} a^{13} + \frac{694}{8555} a^{12} - \frac{887}{8555} a^{11} - \frac{614}{8555} a^{10} + \frac{3822}{8555} a^{9} - \frac{362}{1711} a^{8} - \frac{4001}{8555} a^{7} + \frac{1862}{8555} a^{6} - \frac{2086}{8555} a^{5} + \frac{2883}{8555} a^{4} - \frac{1302}{8555} a^{3} + \frac{1742}{8555} a^{2} + \frac{18}{1711} a + \frac{3332}{8555}$, $\frac{1}{6168239805715} a^{19} - \frac{325601124}{6168239805715} a^{18} + \frac{80540929}{6168239805715} a^{17} - \frac{30083941}{1233647961143} a^{16} + \frac{224974196762}{6168239805715} a^{15} + \frac{222380124778}{6168239805715} a^{14} - \frac{1410918334073}{6168239805715} a^{13} + \frac{327020702959}{1233647961143} a^{12} + \frac{574678866845}{1233647961143} a^{11} - \frac{613129739372}{6168239805715} a^{10} + \frac{1582384938731}{6168239805715} a^{9} + \frac{2063465574984}{6168239805715} a^{8} - \frac{2348208961356}{6168239805715} a^{7} - \frac{520861870309}{6168239805715} a^{6} + \frac{1234566086789}{6168239805715} a^{5} + \frac{2779066258624}{6168239805715} a^{4} + \frac{9216046308}{94895997011} a^{3} - \frac{130374445946}{1233647961143} a^{2} + \frac{1176298004631}{6168239805715} a - \frac{509469851431}{1233647961143}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147782.929749 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 5.1.390224.1 x5, 10.2.4415968335104.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.390224.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{20}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |