Normalized defining polynomial
\( x^{20} + 130 x^{18} + 13285 x^{16} - 5400 x^{15} + 854360 x^{14} + 351000 x^{13} + 45780530 x^{12} + 430677000 x^{11} + 1809909476 x^{10} + 9144603000 x^{9} + 58085116650 x^{8} - 1145774781000 x^{7} + 2300599989000 x^{6} - 21144057010200 x^{5} + 15622931548125 x^{4} + 235380065535000 x^{3} + 690460909256250 x^{2} + 1983734041725000 x + 4004337882200625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56136275023201124305517265191938066406250000000000000000000000000000=2^{28}\cdot 3^{16}\cdot 5^{37}\cdot 29^{5}\cdot 71^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2440.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{60} a^{9} - \frac{1}{12} a^{8} - \frac{1}{30} a^{7} - \frac{1}{30} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{240} a^{10} + \frac{13}{240} a^{8} + \frac{3}{40} a^{6} - \frac{1}{4} a^{5} - \frac{47}{120} a^{4} - \frac{1}{2} a^{3} - \frac{23}{48} a^{2} - \frac{1}{4} a - \frac{5}{16}$, $\frac{1}{240} a^{11} + \frac{1}{240} a^{9} - \frac{1}{12} a^{8} + \frac{1}{120} a^{7} - \frac{1}{12} a^{6} + \frac{1}{24} a^{5} - \frac{1}{3} a^{4} + \frac{13}{240} a^{3} + \frac{1}{4} a^{2} + \frac{7}{16} a + \frac{1}{4}$, $\frac{1}{1440} a^{12} + \frac{1}{720} a^{10} + \frac{5}{96} a^{8} - \frac{1}{24} a^{7} - \frac{13}{360} a^{6} + \frac{5}{24} a^{5} + \frac{199}{1440} a^{4} + \frac{5}{24} a^{3} + \frac{7}{16} a^{2} - \frac{3}{8} a + \frac{5}{32}$, $\frac{1}{1440} a^{13} + \frac{1}{720} a^{11} + \frac{1}{480} a^{9} + \frac{1}{24} a^{8} + \frac{23}{360} a^{7} + \frac{1}{24} a^{6} + \frac{343}{1440} a^{5} - \frac{11}{24} a^{4} + \frac{11}{80} a^{3} + \frac{1}{8} a^{2} - \frac{3}{32} a + \frac{1}{4}$, $\frac{1}{1440} a^{14} - \frac{1}{1440} a^{10} - \frac{1}{120} a^{9} + \frac{31}{720} a^{8} + \frac{7}{120} a^{7} - \frac{11}{480} a^{6} + \frac{7}{120} a^{5} + \frac{1}{36} a^{4} + \frac{29}{120} a^{3} + \frac{35}{96} a^{2} + \frac{1}{4} a + \frac{7}{16}$, $\frac{1}{21600} a^{15} - \frac{1}{4320} a^{13} - \frac{7}{4320} a^{11} - \frac{29}{4320} a^{9} - \frac{1}{24} a^{8} - \frac{233}{4320} a^{7} + \frac{3221}{21600} a^{5} + \frac{1}{4} a^{4} - \frac{29}{480} a^{3} - \frac{1}{3} a^{2} - \frac{13}{32} a - \frac{3}{8}$, $\frac{1}{129600} a^{16} + \frac{1}{3240} a^{14} + \frac{1}{12960} a^{12} - \frac{1}{480} a^{11} - \frac{19}{12960} a^{10} + \frac{1}{160} a^{9} + \frac{23}{12960} a^{8} + \frac{1}{48} a^{7} - \frac{503}{16200} a^{6} - \frac{29}{240} a^{5} + \frac{239}{1440} a^{4} - \frac{209}{480} a^{3} + \frac{11}{32} a^{2} - \frac{41}{96} a - \frac{15}{64}$, $\frac{1}{648000} a^{17} + \frac{1}{64800} a^{15} + \frac{1}{4050} a^{13} + \frac{43}{32400} a^{11} - \frac{1}{480} a^{10} + \frac{229}{32400} a^{9} - \frac{7}{160} a^{8} - \frac{25037}{324000} a^{7} + \frac{19}{240} a^{6} - \frac{761}{5400} a^{5} + \frac{7}{16} a^{4} - \frac{7}{48} a^{3} + \frac{73}{160} a^{2} - \frac{1}{64} a + \frac{9}{32}$, $\frac{1}{165082242787117331754551650906118808024000} a^{18} + \frac{26444858594445796185420046715140477}{55027414262372443918183883635372936008000} a^{17} + \frac{7535142522936328341031830668338373}{2063528034838966646931895636326485100300} a^{16} - \frac{14872283115607249291246180161325829}{5502741426237244391818388363537293600800} a^{15} + \frac{3750333656413902763329130106117126371}{16508224278711733175455165090611880802400} a^{14} - \frac{744563414400583909498061795924154623}{5502741426237244391818388363537293600800} a^{13} - \frac{1061916310854326057546936300986411549}{16508224278711733175455165090611880802400} a^{12} - \frac{5442597973142799161373257467113891643}{5502741426237244391818388363537293600800} a^{11} + \frac{107490351155186071335165317525154571}{2063528034838966646931895636326485100300} a^{10} + \frac{4112990028264691019227523558289195509}{1375685356559311097954597090884323400200} a^{9} + \frac{212548062890887010734297899331416495913}{82541121393558665877275825453059404012000} a^{8} - \frac{1085892080510923296522400342437669649949}{27513707131186221959091941817686468004000} a^{7} + \frac{239542535371604222269726289696979999257}{5502741426237244391818388363537293600800} a^{6} + \frac{69168391526974774387616321917752289219}{366849428415816292787892557569152906720} a^{5} + \frac{125769556529295294533197328310586809}{2717403173450491057688093019030762272} a^{4} - \frac{53544588751391053574876624192223400547}{122283142805272097595964185856384302240} a^{3} + \frac{34232374144256088849039621967753355291}{81522095203514731730642790570922868160} a^{2} - \frac{3574841536644135799422575729813178239}{16304419040702946346128558114184573632} a - \frac{529163099007081610779856686505210217}{2717403173450491057688093019030762272}$, $\frac{1}{9447621794296638556366592293296787584820724479339520997022987425720000} a^{19} - \frac{1602840416813484994120600967}{944762179429663855636659229329678758482072447933952099702298742572000} a^{18} + \frac{900394268015788071708426745522234697467470719168532121432550531}{1889524358859327711273318458659357516964144895867904199404597485144000} a^{17} - \frac{68201481232200425396701875807038026884707242295962679208189881}{37790487177186554225466369173187150339282897917358083988091949702880} a^{16} - \frac{7313650574345475295598076227893717957197669732940325034422564917}{472381089714831927818329614664839379241036223966976049851149371286000} a^{15} + \frac{1062827137420191831746551643610145465411214482734595785453843955}{3779048717718655422546636917318715033928289791735808398809194970288} a^{14} - \frac{6437960289808494418107556466314445334231899808021219264328966277}{29523818107176995488645600916552461202564763997936003115696835705375} a^{13} - \frac{1879314946288864765753612833023739588812749515262084089271968359}{188952435885932771127331845865935751696414489586790419940459748514400} a^{12} + \frac{1353982465923698371493915490607931871733605287468261513555481702803}{944762179429663855636659229329678758482072447933952099702298742572000} a^{11} + \frac{94527891127153829234923271450509680384697892879145600482227571069}{94476217942966385563665922932967875848207244793395209970229874257200} a^{10} + \frac{3538379262551475744530402455600771990971874141261799616352732178113}{4723810897148319278183296146648393792410362239669760498511493712860000} a^{9} - \frac{62808409674829341889736492575059592390879779302492696918643833543767}{944762179429663855636659229329678758482072447933952099702298742572000} a^{8} - \frac{1099631291619059254601296253686424368393269400472661063497395220819}{31492072647655461854555307644322625282735748264465069990076624752400} a^{7} - \frac{454343859321059745000278342829561190336573254022982236637046272183}{31492072647655461854555307644322625282735748264465069990076624752400} a^{6} + \frac{1915305304592871254082777243034876129093356171666338048637021029}{29159326525606909124588247818817245632162729874504694435256134030} a^{5} - \frac{905153621180528193287819809552120339001619801574028276937260207411}{6998238366145658189901179476516138951719055169881126664461472167200} a^{4} + \frac{496664685412084678296164493693971261284812631425174630481274411383}{2799295346458263275960471790606455580687622067952450665784588866880} a^{3} + \frac{26936531840190475130657710329571792316572173196313338642843380545}{93309844881942109198682393020215186022920735598415022192819628896} a^{2} - \frac{91820352727440283743054138987054072021732026406985403679497406593}{186619689763884218397364786040430372045841471196830044385639257792} a + \frac{2261054123366589409344635498254789655396646714351048200883960967}{7775820406828509099890199418351265501910061299867918516068302408}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.11695120.4, 5.1.2531250000.5, 10.0.11560106222569335937500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.5 | $x^{10} + 55$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |