Normalized defining polynomial
\( x^{20} - 2 x^{19} + x^{18} + 8 x^{17} - 6 x^{16} - 15 x^{15} + 88 x^{14} - 82 x^{13} + 37 x^{12} + 161 x^{11} - 75 x^{10} - 70 x^{9} + 457 x^{8} - 571 x^{7} + 238 x^{6} - 333 x^{5} + 297 x^{4} - 55 x^{3} + 4 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(559092234403032700371849=3^{10}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{14} - \frac{4}{9} a^{13} - \frac{1}{3} a^{12} + \frac{4}{9} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{133713} a^{18} + \frac{3023}{133713} a^{17} + \frac{2936}{44571} a^{16} - \frac{11183}{133713} a^{15} + \frac{15670}{133713} a^{14} - \frac{62468}{133713} a^{13} + \frac{66340}{133713} a^{12} + \frac{44401}{133713} a^{11} + \frac{2183}{133713} a^{10} + \frac{13669}{44571} a^{9} + \frac{65983}{133713} a^{8} - \frac{1345}{133713} a^{7} + \frac{29873}{133713} a^{6} - \frac{2623}{133713} a^{5} - \frac{33778}{133713} a^{4} - \frac{55027}{133713} a^{3} - \frac{9656}{44571} a^{2} - \frac{12956}{133713} a + \frac{54695}{133713}$, $\frac{1}{1224552528805520511} a^{19} - \frac{1032491912798}{408184176268506837} a^{18} - \frac{1385560461684462}{136061392089502279} a^{17} + \frac{16367728475116}{441598459720707} a^{16} - \frac{44333360843718520}{1224552528805520511} a^{15} + \frac{14684857875879857}{136061392089502279} a^{14} + \frac{502337802237598312}{1224552528805520511} a^{13} - \frac{318538490245761307}{1224552528805520511} a^{12} + \frac{447471073293651667}{1224552528805520511} a^{11} - \frac{351604643425215683}{1224552528805520511} a^{10} + \frac{1290478606537511}{1224552528805520511} a^{9} - \frac{348701208910477763}{1224552528805520511} a^{8} + \frac{43198732004852}{187154597096977} a^{7} - \frac{548133728075167267}{1224552528805520511} a^{6} + \frac{440664239840108386}{1224552528805520511} a^{5} - \frac{131050927925684348}{408184176268506837} a^{4} + \frac{3360219307804210}{136061392089502279} a^{3} - \frac{94203431654066276}{1224552528805520511} a^{2} + \frac{8032157109832}{2280358526639703} a - \frac{129521375586828328}{408184176268506837}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{96092166810790}{27474199116141} a^{19} - \frac{167108841371303}{27474199116141} a^{18} + \frac{51753547767158}{27474199116141} a^{17} + \frac{282461861815}{9907753017} a^{16} - \frac{124121208803925}{9158066372047} a^{15} - \frac{1544404900966796}{27474199116141} a^{14} + \frac{8053937687745626}{27474199116141} a^{13} - \frac{1922343285258563}{9158066372047} a^{12} + \frac{1992656430872606}{27474199116141} a^{11} + \frac{5339033228129410}{9158066372047} a^{10} - \frac{3044823086315212}{27474199116141} a^{9} - \frac{7646021619585541}{27474199116141} a^{8} + \frac{57624992305718}{37791195483} a^{7} - \frac{43912315241752433}{27474199116141} a^{6} + \frac{3696876718234588}{9158066372047} a^{5} - \frac{28889125995667657}{27474199116141} a^{4} + \frac{20925564741740648}{27474199116141} a^{3} + \frac{401789753313739}{27474199116141} a^{2} + \frac{380716560077269}{27474199116141} a - \frac{353841031305115}{27474199116141} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12895.8301109 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{237}) \), \(\Q(\sqrt{-3}, \sqrt{-79})\), 5.1.6241.1 x5, 10.0.3077056399.1, 10.0.9464869683.1 x5, 10.2.747724704957.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |