Normalized defining polynomial
\( x^{20} - 6 x^{19} + 22 x^{18} - 48 x^{17} + 99 x^{16} - 279 x^{15} + 825 x^{14} - 1626 x^{13} + 2616 x^{12} - 4636 x^{11} + 8769 x^{10} - 12770 x^{9} + 10464 x^{8} + 6378 x^{7} - 34663 x^{6} + 51815 x^{5} - 32318 x^{4} - 12998 x^{3} + 42435 x^{2} - 31710 x + 10031 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5561214638787231316416015625=5^{10}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{2}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{49} a^{15} - \frac{3}{49} a^{14} - \frac{3}{49} a^{13} + \frac{3}{49} a^{12} - \frac{3}{49} a^{11} - \frac{18}{49} a^{10} + \frac{2}{49} a^{9} + \frac{16}{49} a^{8} + \frac{10}{49} a^{7} + \frac{18}{49} a^{6} - \frac{11}{49} a^{5} + \frac{4}{49} a^{4} + \frac{11}{49} a^{3} - \frac{13}{49} a^{2} - \frac{2}{7}$, $\frac{1}{833} a^{16} + \frac{2}{833} a^{15} - \frac{53}{833} a^{14} + \frac{37}{833} a^{13} + \frac{47}{833} a^{12} + \frac{296}{833} a^{11} - \frac{32}{833} a^{10} + \frac{201}{833} a^{9} - \frac{337}{833} a^{8} + \frac{166}{833} a^{7} + \frac{17}{49} a^{6} + \frac{61}{833} a^{5} - \frac{319}{833} a^{4} - \frac{33}{119} a^{3} + \frac{397}{833} a^{2} - \frac{2}{119} a - \frac{10}{119}$, $\frac{1}{10829} a^{17} - \frac{108}{10829} a^{15} - \frac{180}{10829} a^{14} + \frac{1}{1547} a^{13} - \frac{6}{119} a^{12} + \frac{362}{10829} a^{11} + \frac{594}{1547} a^{10} + \frac{3800}{10829} a^{9} + \frac{1571}{10829} a^{8} - \frac{657}{1547} a^{7} + \frac{594}{1547} a^{6} + \frac{4285}{10829} a^{5} + \frac{556}{1547} a^{4} + \frac{2321}{10829} a^{3} - \frac{383}{10829} a^{2} - \frac{125}{1547} a - \frac{711}{1547}$, $\frac{1}{24181157} a^{18} - \frac{151}{24181157} a^{17} + \frac{230}{24181157} a^{16} + \frac{30285}{24181157} a^{15} - \frac{1076942}{24181157} a^{14} - \frac{147428}{3454451} a^{13} - \frac{93}{24181157} a^{12} - \frac{2126}{2198287} a^{11} - \frac{9191110}{24181157} a^{10} - \frac{6126973}{24181157} a^{9} + \frac{63073}{2198287} a^{8} + \frac{124}{539} a^{7} + \frac{1469518}{24181157} a^{6} + \frac{10372225}{24181157} a^{5} + \frac{11247879}{24181157} a^{4} + \frac{3441441}{24181157} a^{3} + \frac{2631868}{24181157} a^{2} + \frac{1615539}{3454451} a - \frac{951736}{3454451}$, $\frac{1}{4091463595959552897758823149} a^{19} - \frac{1237958783873587163}{371951235996322990705347559} a^{18} + \frac{3803781067189019560311}{141084951584812168888235281} a^{17} + \frac{48039186377786601169113}{141084951584812168888235281} a^{16} + \frac{37127031906002891965762690}{4091463595959552897758823149} a^{15} + \frac{6523148846086514010445904}{240674329174091346926989597} a^{14} + \frac{2791666135831849917396255}{371951235996322990705347559} a^{13} + \frac{61281269031316368985337523}{4091463595959552897758823149} a^{12} + \frac{133025346356371396945718693}{314727968919965607519909473} a^{11} - \frac{459082651203553989221926450}{4091463595959552897758823149} a^{10} - \frac{1731509295461586359811669867}{4091463595959552897758823149} a^{9} - \frac{120190528148764190195268661}{314727968919965607519909473} a^{8} + \frac{1339357211562205467848465166}{4091463595959552897758823149} a^{7} + \frac{122569592825671703414791709}{314727968919965607519909473} a^{6} + \frac{1914669186699195146409139674}{4091463595959552897758823149} a^{5} - \frac{1436768425091447930411051321}{4091463595959552897758823149} a^{4} - \frac{16525575118985131257236333}{177889721563458821641687963} a^{3} + \frac{44582081840398885226230443}{141084951584812168888235281} a^{2} - \frac{24956831670874787416606868}{53135890856617570100763937} a + \frac{14393247590165161686693762}{584494799422793271108403307}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 373616.54629 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{-35}, \sqrt{85})\), 5.1.14161.1 x5, 10.0.23863536599.2, 10.0.4386679521875.2 x5, 10.2.10653364553125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |