Normalized defining polynomial
\( x^{20} - 6 x^{19} + 9 x^{18} + 14 x^{17} - 34 x^{16} - 50 x^{15} + 132 x^{14} + 7 x^{13} + 24 x^{12} - 323 x^{11} + 457 x^{10} - 3573 x^{9} + 12919 x^{8} - 21832 x^{7} + 24538 x^{6} - 23909 x^{5} + 18576 x^{4} - 8077 x^{3} + 1594 x^{2} - 1485 x + 1019 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5561214638787231316416015625=5^{10}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{15} + \frac{3}{7} a^{13} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{17423} a^{17} - \frac{99}{2489} a^{16} + \frac{2089}{17423} a^{15} + \frac{4917}{17423} a^{14} + \frac{5557}{17423} a^{13} - \frac{2691}{17423} a^{12} + \frac{6438}{17423} a^{11} + \frac{7078}{17423} a^{10} - \frac{2734}{17423} a^{9} - \frac{93}{17423} a^{8} - \frac{2004}{17423} a^{7} + \frac{8478}{17423} a^{6} - \frac{5176}{17423} a^{5} - \frac{6382}{17423} a^{4} + \frac{5590}{17423} a^{3} - \frac{5108}{17423} a^{2} - \frac{4367}{17423} a + \frac{4181}{17423}$, $\frac{1}{17423} a^{18} - \frac{272}{17423} a^{16} - \frac{1207}{2489} a^{15} - \frac{1870}{17423} a^{14} + \frac{2805}{17423} a^{13} + \frac{5836}{17423} a^{12} + \frac{478}{2489} a^{11} + \frac{1479}{17423} a^{10} + \frac{4352}{17423} a^{9} + \frac{8217}{17423} a^{8} + \frac{6079}{17423} a^{7} - \frac{1473}{17423} a^{6} + \frac{465}{2489} a^{5} + \frac{831}{2489} a^{4} + \frac{3345}{17423} a^{3} + \frac{125}{17423} a^{2} - \frac{7971}{17423} a - \frac{4741}{17423}$, $\frac{1}{234946247256159992305206132497} a^{19} + \frac{2342834798293126096696574}{234946247256159992305206132497} a^{18} + \frac{2773701612526569441331917}{234946247256159992305206132497} a^{17} + \frac{4787994441538939748091247856}{234946247256159992305206132497} a^{16} + \frac{78497725242472569355997607147}{234946247256159992305206132497} a^{15} - \frac{12255666703364960575903649443}{33563749608022856043600876071} a^{14} - \frac{8629572132155340835201265623}{33563749608022856043600876071} a^{13} + \frac{3461711438421196045027643907}{18072788250473845561938933269} a^{12} + \frac{55401306938677307593767220632}{234946247256159992305206132497} a^{11} + \frac{62249425974009754425039113218}{234946247256159992305206132497} a^{10} + \frac{93350891331110110613789035823}{234946247256159992305206132497} a^{9} + \frac{27649540352189114155565797955}{234946247256159992305206132497} a^{8} + \frac{99347486257448404143143747388}{234946247256159992305206132497} a^{7} + \frac{80622911871786079328425434947}{234946247256159992305206132497} a^{6} - \frac{103248347637044879776149436139}{234946247256159992305206132497} a^{5} + \frac{10765223624176443049371701034}{33563749608022856043600876071} a^{4} + \frac{12024606409774218849289861185}{33563749608022856043600876071} a^{3} - \frac{112716163489948336113100138168}{234946247256159992305206132497} a^{2} - \frac{66062735679700151848686161147}{234946247256159992305206132497} a - \frac{28720495231074640117705724632}{234946247256159992305206132497}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69161.3662661 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-595}) \), \(\Q(\sqrt{5}, \sqrt{-119})\), 5.1.14161.1 x5, 10.0.23863536599.2, 10.2.626668503125.1 x5, 10.0.74573551871875.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |