Normalized defining polynomial
\( x^{20} - 6 x^{19} + 18 x^{18} - 35 x^{17} + 3 x^{16} - 8 x^{15} + 443 x^{14} - 1487 x^{13} + 2989 x^{12} - 167 x^{11} - 6369 x^{10} + 4885 x^{9} + 19103 x^{8} - 31548 x^{7} + 7631 x^{6} + 30774 x^{5} - 21536 x^{4} - 18172 x^{3} + 51631 x^{2} - 46426 x + 19321 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55374574082926437693343023378125=5^{5}\cdot 61^{10}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{18327096600368963210466598669487534679785738781215} a^{19} - \frac{6508212703710373635339741415165469915485406558292}{18327096600368963210466598669487534679785738781215} a^{18} - \frac{1203568975040001144099878664228059801183066144266}{3665419320073792642093319733897506935957147756243} a^{17} - \frac{1807126556885254484109454324037911476669617952880}{3665419320073792642093319733897506935957147756243} a^{16} + \frac{2766146083835212599861808945356166537163182327618}{18327096600368963210466598669487534679785738781215} a^{15} - \frac{401447176434485869121996541885877896134213395822}{1409776661566843323882046051499041129214287598555} a^{14} + \frac{7430702631680228828388615268208742624830220012309}{18327096600368963210466598669487534679785738781215} a^{13} + \frac{7702393289372702685435977355040884395197698417729}{18327096600368963210466598669487534679785738781215} a^{12} + \frac{494056910086706719050959763192336397203902552419}{3665419320073792642093319733897506935957147756243} a^{11} + \frac{5129401001143575794780001908778922985412177348938}{18327096600368963210466598669487534679785738781215} a^{10} + \frac{6988282846438670602848737768350225075620047554428}{18327096600368963210466598669487534679785738781215} a^{9} + \frac{4934131005571607212764284073304992615969566487507}{18327096600368963210466598669487534679785738781215} a^{8} + \frac{6163061849086609554055162516671799207037896782986}{18327096600368963210466598669487534679785738781215} a^{7} - \frac{6760806958732304988705926245333741790681757820814}{18327096600368963210466598669487534679785738781215} a^{6} - \frac{1577644463208045612200456801177135420082910358869}{3665419320073792642093319733897506935957147756243} a^{5} + \frac{6089679595271337834180738816544653439052596003339}{18327096600368963210466598669487534679785738781215} a^{4} + \frac{216974271872083623767050821048594894084604230102}{3665419320073792642093319733897506935957147756243} a^{3} - \frac{7800817641609670586023544237076046752407634339037}{18327096600368963210466598669487534679785738781215} a^{2} + \frac{3193059133193208831588316973394843501504701265688}{18327096600368963210466598669487534679785738781215} a - \frac{43262910257210941050710420888797031192095592621}{131849615829992541082493515607823990502055674685}$
Class group and class number
$C_{16}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2930357.91985 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.18605.1, 5.5.24217.1, 10.10.133115978404309.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||