Normalized defining polynomial
\( x^{20} + 5 x^{18} + 23 x^{16} + 42 x^{14} + 13 x^{12} - 81 x^{10} - 91 x^{8} + 94 x^{6} + 71 x^{4} - 35 x^{2} + 61 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55287716661036997710708736=2^{44}\cdot 61^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{28} a^{16} - \frac{1}{14} a^{14} - \frac{3}{28} a^{12} + \frac{3}{28} a^{10} - \frac{1}{4} a^{8} + \frac{9}{28} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{2}{7}$, $\frac{1}{28} a^{17} - \frac{1}{14} a^{15} - \frac{3}{28} a^{13} + \frac{3}{28} a^{11} - \frac{1}{4} a^{9} + \frac{9}{28} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{2}{7} a$, $\frac{1}{207885608} a^{18} - \frac{1}{56} a^{17} - \frac{2066039}{207885608} a^{16} + \frac{1}{28} a^{15} - \frac{2639939}{25985701} a^{14} - \frac{1}{14} a^{13} + \frac{9018397}{103942804} a^{12} + \frac{1}{14} a^{11} + \frac{6769585}{207885608} a^{10} + \frac{1}{8} a^{9} - \frac{50867451}{207885608} a^{8} - \frac{2}{7} a^{7} + \frac{20891335}{51971402} a^{6} - \frac{1}{2} a^{5} - \frac{396129}{7424486} a^{4} - \frac{1}{4} a^{3} + \frac{60110541}{207885608} a^{2} - \frac{1}{56} a - \frac{4436433}{207885608}$, $\frac{1}{207885608} a^{19} + \frac{58793}{7424486} a^{17} - \frac{1}{56} a^{16} + \frac{836693}{7424486} a^{15} + \frac{1}{28} a^{14} - \frac{4771409}{51971402} a^{13} - \frac{1}{14} a^{12} - \frac{8079387}{207885608} a^{11} + \frac{1}{14} a^{10} - \frac{12440875}{103942804} a^{9} + \frac{1}{8} a^{8} + \frac{4877303}{25985701} a^{7} - \frac{2}{7} a^{6} - \frac{4504501}{14848972} a^{5} - \frac{1}{2} a^{4} + \frac{60110541}{207885608} a^{3} - \frac{1}{4} a^{2} - \frac{362095}{103942804} a - \frac{1}{56}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70381.859282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.1.15616.1, 10.2.14875426816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |