Normalized defining polynomial
\( x^{20} - 8 x^{19} + 44 x^{18} - 168 x^{17} + 462 x^{16} - 880 x^{15} + 1232 x^{14} - 184 x^{13} - 43 x^{12} - 2824 x^{11} + 23124 x^{10} - 71232 x^{9} + 173896 x^{8} - 158688 x^{7} + 135888 x^{6} - 51264 x^{5} - 5868 x^{4} + 45792 x^{3} - 7344 x^{2} - 5184 x + 1296 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55180948378603639203880482373632=2^{55}\cdot 3^{10}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{24} a^{12} + \frac{1}{24} a^{10} - \frac{1}{6} a^{9} + \frac{1}{8} a^{8} + \frac{5}{24} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} + \frac{1}{48} a^{11} - \frac{5}{48} a^{10} + \frac{7}{48} a^{9} - \frac{1}{16} a^{8} + \frac{5}{48} a^{7} + \frac{7}{48} a^{6} - \frac{1}{4} a^{5} + \frac{1}{6} a^{4} - \frac{11}{24} a^{3} - \frac{5}{24} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{48} a^{14} + \frac{1}{24} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{5}{24} a^{8} - \frac{1}{8} a^{7} - \frac{11}{48} a^{6} - \frac{1}{3} a^{5} - \frac{1}{24} a^{4} - \frac{5}{12} a^{3} + \frac{7}{24} a^{2} + \frac{1}{4}$, $\frac{1}{48} a^{15} + \frac{1}{24} a^{11} - \frac{1}{12} a^{10} + \frac{5}{24} a^{9} - \frac{5}{48} a^{7} + \frac{1}{12} a^{6} + \frac{5}{24} a^{5} - \frac{1}{6} a^{4} + \frac{5}{24} a^{3} - \frac{1}{6} a^{2} - \frac{1}{4} a$, $\frac{1}{3168} a^{16} - \frac{7}{1584} a^{15} - \frac{1}{144} a^{14} + \frac{1}{132} a^{13} + \frac{1}{132} a^{12} + \frac{1}{99} a^{11} + \frac{7}{99} a^{10} - \frac{67}{792} a^{9} - \frac{29}{288} a^{8} - \frac{71}{1584} a^{7} - \frac{3}{176} a^{6} + \frac{35}{88} a^{5} + \frac{299}{1584} a^{4} + \frac{23}{88} a^{3} + \frac{5}{264} a^{2} - \frac{19}{44} a - \frac{1}{11}$, $\frac{1}{9504} a^{17} + \frac{1}{9504} a^{16} + \frac{1}{297} a^{15} + \frac{5}{528} a^{14} - \frac{1}{792} a^{13} + \frac{4}{297} a^{12} + \frac{1}{216} a^{11} - \frac{151}{2376} a^{10} + \frac{1337}{9504} a^{9} - \frac{1759}{9504} a^{8} + \frac{137}{792} a^{7} - \frac{35}{1584} a^{6} - \frac{811}{4752} a^{5} + \frac{31}{528} a^{4} + \frac{179}{396} a^{3} + \frac{53}{264} a^{2} - \frac{47}{132} a + \frac{1}{22}$, $\frac{1}{133056} a^{18} - \frac{1}{22176} a^{17} - \frac{5}{33264} a^{16} + \frac{31}{8316} a^{15} + \frac{31}{5544} a^{14} + \frac{179}{33264} a^{13} + \frac{169}{11088} a^{12} - \frac{295}{11088} a^{11} - \frac{53}{44352} a^{10} - \frac{1031}{22176} a^{9} - \frac{1151}{8316} a^{8} - \frac{251}{1232} a^{7} - \frac{3613}{66528} a^{6} - \frac{15751}{33264} a^{5} - \frac{907}{5544} a^{4} + \frac{1003}{5544} a^{3} + \frac{27}{154} a^{2} + \frac{149}{462} a + \frac{1}{308}$, $\frac{1}{7001891374746957877964456284089024} a^{19} + \frac{2332648858278540250793176121}{3500945687373478938982228142044512} a^{18} - \frac{12263568275931288066996728629}{1750472843686739469491114071022256} a^{17} - \frac{27260926530896619676867158433}{194496982631859941054568230113584} a^{16} + \frac{270267528390988706941338642109}{36468184243473738947731543146297} a^{15} + \frac{12591507895861484197020715497743}{1750472843686739469491114071022256} a^{14} - \frac{8522936122492522546830861799487}{875236421843369734745557035511128} a^{13} - \frac{14801913955159005748504423495115}{875236421843369734745557035511128} a^{12} - \frac{94677790458819969906404337027883}{7001891374746957877964456284089024} a^{11} - \frac{185075450465552410837996193014607}{3500945687373478938982228142044512} a^{10} + \frac{1387479899018606332586985130907}{27785283233122848722081175730512} a^{9} + \frac{114456182663143206900727567198957}{583490947895579823163704690340752} a^{8} - \frac{72741313277967418057626766220857}{500135098196211276997461163149216} a^{7} + \frac{7820823140971067945547412009727}{291745473947789911581852345170376} a^{6} + \frac{48403803689642110375392294849343}{291745473947789911581852345170376} a^{5} - \frac{6330931013547680727384423441893}{16208081885988328421214019176132} a^{4} + \frac{9691787041994934269142405016829}{32416163771976656842428038352264} a^{3} + \frac{32863285133260314172567610673}{140329713298600246071117049144} a^{2} - \frac{73290995794685817000402289987}{736730994817651291873364508006} a - \frac{2274902389151986278311172336727}{5402693961996109473738006392044}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 298817472.483 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.2230272.1, 5.1.2230272.1 x5, 10.2.39792905551872.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.2230272.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |