Normalized defining polynomial
\( x^{20} - 2380244 x^{15} - 16449885784464 x^{10} - 54627959472340369984 x^{5} + 526728719890528781692016896 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55151002218183282893941830832304805064658020210266113281250000000000000000=2^{16}\cdot 5^{35}\cdot 11^{12}\cdot 461^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4864.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{144876522736} a^{10} - \frac{132009165}{1906270036} a^{5} + \frac{740493}{1785601}$, $\frac{1}{144876522736} a^{11} - \frac{132009165}{1906270036} a^{6} + \frac{740493}{1785601} a$, $\frac{1}{1593641750096} a^{12} - \frac{132009165}{20968970396} a^{7} - \frac{2830709}{19641611} a^{2}$, $\frac{1}{1469337693588512} a^{13} + \frac{775719895487}{19333390705112} a^{8} - \frac{1621848262}{9054782671} a^{3}$, $\frac{1}{16162714629473632} a^{14} + \frac{1003217676238}{26583412219529} a^{9} - \frac{30408044537}{199205218762} a^{4}$, $\frac{1}{16837198850459904248741693504} a^{15} + \frac{826376688376766}{263081232038436003886588961} a^{10} - \frac{75021364690897920180}{51879556702511536952591} a^{5} - \frac{6638278225574}{183407187124141}$, $\frac{1}{16837198850459904248741693504} a^{16} + \frac{826376688376766}{263081232038436003886588961} a^{11} - \frac{75021364690897920180}{51879556702511536952591} a^{6} - \frac{6638278225574}{183407187124141} a$, $\frac{1}{85381435370682174445369127758784} a^{17} + \frac{2766778535108198273}{10672679421335271805671140969848} a^{12} - \frac{1157841988655905132916821}{526162464076872007773177922} a^{7} + \frac{379975171395842909}{930057845906519011} a^{2}$, $\frac{1}{1878391578155007837798120810693248} a^{18} + \frac{32359901717730055}{117399473634687989862382550668328} a^{13} + \frac{282002824580090796929155161}{5787787104845592085504957142} a^{8} + \frac{4686901451899384251}{20461272609943418242} a^{3}$, $\frac{1}{9525323692824044745474270631025460608} a^{19} - \frac{7860519008290402305}{2381330923206011186368567657756365152} a^{14} - \frac{3413737757752726776573880688143}{117399473634687989862382550668328} a^{9} + \frac{7756939441467951393849}{51879556702511536952591} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{66778659}{16837198850459904248741693504} a^{15} - \frac{46961849360605}{1052324928153744015546355844} a^{10} - \frac{3849310321399365}{103759113405023073905182} a^{5} + \frac{182430536391150}{183407187124141} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 461 | Data not computed | ||||||