Normalized defining polynomial
\( x^{20} - 4 x^{19} + 72 x^{18} - 128 x^{17} + 1787 x^{16} - 638 x^{15} + 25166 x^{14} + 13740 x^{13} + 237865 x^{12} + 356230 x^{11} + 1013178 x^{10} + 4710184 x^{9} + 487944 x^{8} + 22409014 x^{7} + 13861755 x^{6} + 11751366 x^{5} + 120949292 x^{4} - 96683974 x^{3} + 226406567 x^{2} - 104041302 x + 87491689 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55039620640627142810521394077176301617152=2^{20}\cdot 17^{10}\cdot 53^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a^{19} - \frac{6793308276831053791595996168782023917431392063475408910226229344554745193217}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{18} + \frac{87005768263980494645738869929249877482138748229851908630926132572901121611635}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a^{17} - \frac{109370787885866632393252295490695606066054203711435795491889122001552861390203}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{16} - \frac{8732380694486108366107528663670348468696626152708070768780831727697287467190}{116401247184249286431190288904371639921799541881002194814998978137749751886973} a^{15} - \frac{20355152467394957079077933349513936411127054963693711428928674415782656787033}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{14} + \frac{113511609430254797599900424500407068186865757753395994691777245000323873764263}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{13} + \frac{43460136578282435948863263541636265247286784271409397972989603722737947708869}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{12} + \frac{221631592134088976740536502791211914363032173405328425006158411570340214107807}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a^{11} + \frac{82626349598829825305803382011237052841885875146235647446205294568144378010385}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{10} + \frac{93692257758636742688332842649623246925330899292278821658586183309247101166899}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a^{9} - \frac{42212017881813954674144352930698125047225089916823239838653074078461630376961}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{8} - \frac{227016868843046253136195672259046851219456473738485021124100169819993599502127}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a^{7} + \frac{10375999943275140432387667682154529703558403325796370702403607872379368675871}{116401247184249286431190288904371639921799541881002194814998978137749751886973} a^{6} - \frac{111186093815833745036230896609693848006042721068316571367544036765799557638581}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{5} - \frac{42747645468254031656811531173717020871252100067143287638251478359255689679721}{116401247184249286431190288904371639921799541881002194814998978137749751886973} a^{4} + \frac{42053407163035770241603118750151192907249678988587175522761550896393203770619}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{3} - \frac{113274140016597380922863388192307063176013076913131765933256858718492718435497}{232802494368498572862380577808743279843599083762004389629997956275499503773946} a^{2} - \frac{101241748393363295861865526028611481669113935789170833204332758754580123988191}{465604988736997145724761155617486559687198167524008779259995912550999007547892} a + \frac{55771897979092808962974965231227979657900308860155955942820316526936564860549}{232802494368498572862380577808743279843599083762004389629997956275499503773946}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{110}$, which has order $880$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4097659676.87 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.245072.1, 5.5.2382032.1, 10.10.8056377164681869568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |