Normalized defining polynomial
\( x^{20} - 2 x^{19} - x^{18} + 10 x^{17} - 8 x^{16} - 11 x^{15} + 19 x^{14} + 32 x^{13} + 10 x^{12} - 87 x^{11} + 19 x^{10} + 122 x^{9} + 84 x^{8} - 25 x^{7} - 47 x^{6} - 15 x^{5} + 7 x^{4} - x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545927246769279384765625=5^{10}\cdot 236438047^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 236438047$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{435457582351296523} a^{19} + \frac{216052428417412562}{435457582351296523} a^{18} - \frac{40982935491688342}{435457582351296523} a^{17} + \frac{56309060571826632}{435457582351296523} a^{16} + \frac{133133927093294526}{435457582351296523} a^{15} + \frac{117926520183960024}{435457582351296523} a^{14} + \frac{129552111089414400}{435457582351296523} a^{13} - \frac{178959263209344446}{435457582351296523} a^{12} - \frac{109718463772910522}{435457582351296523} a^{11} - \frac{105221053716270944}{435457582351296523} a^{10} + \frac{119256300176794262}{435457582351296523} a^{9} - \frac{178931046357406355}{435457582351296523} a^{8} - \frac{209762790005921730}{435457582351296523} a^{7} - \frac{101552756588905198}{435457582351296523} a^{6} + \frac{4782977111399419}{435457582351296523} a^{5} + \frac{39483633692795796}{435457582351296523} a^{4} + \frac{145705283532897705}{435457582351296523} a^{3} - \frac{16954462707793313}{435457582351296523} a^{2} + \frac{205998763141074956}{435457582351296523} a + \frac{100030383057517175}{435457582351296523}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3125.33941918 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.0.236438047.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 236438047 | Data not computed | ||||||