Normalized defining polynomial
\( x^{20} - 10 x^{19} + 45 x^{18} - 120 x^{17} + 220 x^{16} - 284 x^{15} + 130 x^{14} + 640 x^{13} - 2335 x^{12} - 1890 x^{11} + 29993 x^{10} - 83440 x^{9} + 127410 x^{8} - 98360 x^{7} + 89320 x^{6} - 200888 x^{5} + 312880 x^{4} - 267040 x^{3} + 191840 x^{2} - 162240 x + 71696 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(545211086046835507200000000000000000000=2^{38}\cdot 3^{17}\cdot 5^{20}\cdot 11^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} + \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{16} + \frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} + \frac{5}{24} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{1}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{24} a^{17} - \frac{1}{12} a^{14} + \frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{1}{24} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{567243672658296} a^{18} + \frac{1123002601925}{141810918164574} a^{17} + \frac{1189326562948}{70905459082287} a^{16} - \frac{2965318345997}{141810918164574} a^{15} + \frac{1542674702971}{47270306054858} a^{14} - \frac{33433403664499}{283621836329148} a^{13} - \frac{6933356736565}{94540612109716} a^{12} + \frac{1647767103764}{23635153027429} a^{11} - \frac{48489370833227}{567243672658296} a^{10} - \frac{30521917596341}{283621836329148} a^{9} - \frac{25406176882267}{283621836329148} a^{8} + \frac{9724749245725}{70905459082287} a^{7} + \frac{27516604332275}{283621836329148} a^{6} - \frac{44397204093833}{141810918164574} a^{5} + \frac{54046621385041}{141810918164574} a^{4} - \frac{1727341552187}{47270306054858} a^{3} - \frac{25723090792451}{70905459082287} a^{2} + \frac{31859295016904}{70905459082287} a + \frac{18090761738213}{70905459082287}$, $\frac{1}{8686154035600365568268583672552} a^{19} + \frac{2168432030954503}{8686154035600365568268583672552} a^{18} - \frac{39841915649676811822789185505}{2171538508900091392067145918138} a^{17} + \frac{25139498918663161870538821141}{8686154035600365568268583672552} a^{16} - \frac{4474071786754342102583739508}{361923084816681898677857653023} a^{15} + \frac{378596101604781165065639057309}{4343077017800182784134291836276} a^{14} - \frac{25483493144039908426149374707}{482564113088909198237143537364} a^{13} + \frac{217955953660749006057403270417}{2171538508900091392067145918138} a^{12} + \frac{25130992369919723500649941255}{8686154035600365568268583672552} a^{11} - \frac{338242286516375661797980366615}{8686154035600365568268583672552} a^{10} - \frac{287405267830579288393976905307}{1447692339266727594711430612092} a^{9} - \frac{1219919384546036903628359078377}{8686154035600365568268583672552} a^{8} + \frac{472794014195141913878171632933}{2171538508900091392067145918138} a^{7} + \frac{234105572560005303436420837945}{1447692339266727594711430612092} a^{6} + \frac{169578775071912134810715243391}{2171538508900091392067145918138} a^{5} - \frac{85577767539085055328076628362}{361923084816681898677857653023} a^{4} - \frac{306298056129200116777635800939}{2171538508900091392067145918138} a^{3} - \frac{76082215583801395226667104932}{1085769254450045696033572959069} a^{2} + \frac{211625716610305450445634132608}{1085769254450045696033572959069} a - \frac{437596620246673253057436180728}{1085769254450045696033572959069}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 455641598745.8738 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2112.1, 5.1.4050000.3, 10.0.33592320000000000.77 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |