Normalized defining polynomial
\( x^{20} + 391 x^{18} + 55991 x^{16} + 3687046 x^{14} + 118265156 x^{12} + 2038773950 x^{10} + 19835671615 x^{8} + 108465111260 x^{6} + 310756387810 x^{4} + 375696185150 x^{2} + 59667980405 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54383102575415196991694675182112000000000000000=2^{20}\cdot 5^{15}\cdot 11^{6}\cdot 9931^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{55} a^{16} - \frac{27}{55} a^{14} + \frac{1}{55} a^{12} + \frac{4}{11} a^{8} + \frac{3}{11} a^{6} - \frac{2}{11} a^{4}$, $\frac{1}{55} a^{17} - \frac{27}{55} a^{15} + \frac{1}{55} a^{13} + \frac{4}{11} a^{9} + \frac{3}{11} a^{7} - \frac{2}{11} a^{5}$, $\frac{1}{149948921694620036962829941073954306814100138034645605} a^{18} - \frac{340807840089527996062279609365587070933384718079783}{149948921694620036962829941073954306814100138034645605} a^{16} + \frac{58307002996267540327871056554891254347066337828094778}{149948921694620036962829941073954306814100138034645605} a^{14} + \frac{69506174100952036519458970337201734002451036098488599}{149948921694620036962829941073954306814100138034645605} a^{12} - \frac{2834213881295299878707451613772344423668351241761259}{29989784338924007392565988214790861362820027606929121} a^{10} - \frac{8623740228558297469537677871867476014965646488630599}{29989784338924007392565988214790861362820027606929121} a^{8} + \frac{3015430448640311023307295134885458584830805890512770}{29989784338924007392565988214790861362820027606929121} a^{6} - \frac{14042931732858114058054470547640199753392537489317857}{29989784338924007392565988214790861362820027606929121} a^{4} + \frac{1212392825126044100412306817136095643858449240556282}{2726344030811273399324180746799169214801820691539011} a^{2} - \frac{111677741391928626800935663328328423759925919549}{274528650771450347328988092518293144174989496681}$, $\frac{1}{149948921694620036962829941073954306814100138034645605} a^{19} - \frac{340807840089527996062279609365587070933384718079783}{149948921694620036962829941073954306814100138034645605} a^{17} + \frac{58307002996267540327871056554891254347066337828094778}{149948921694620036962829941073954306814100138034645605} a^{15} + \frac{69506174100952036519458970337201734002451036098488599}{149948921694620036962829941073954306814100138034645605} a^{13} - \frac{2834213881295299878707451613772344423668351241761259}{29989784338924007392565988214790861362820027606929121} a^{11} - \frac{8623740228558297469537677871867476014965646488630599}{29989784338924007392565988214790861362820027606929121} a^{9} + \frac{3015430448640311023307295134885458584830805890512770}{29989784338924007392565988214790861362820027606929121} a^{7} - \frac{14042931732858114058054470547640199753392537489317857}{29989784338924007392565988214790861362820027606929121} a^{5} + \frac{1212392825126044100412306817136095643858449240556282}{2726344030811273399324180746799169214801820691539011} a^{3} - \frac{111677741391928626800935663328328423759925919549}{274528650771450347328988092518293144174989496681} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{21353032}$, which has order $170824256$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8467206.71416 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 180 conjugacy class representatives for t20n1010 are not computed |
| Character table for t20n1010 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $20$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 9931 | Data not computed | ||||||