Properties

Label 20.0.54320086096...0625.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{10}\cdot 13^{4}\cdot 41^{7}$
Root discriminant $13.70$
Ramified primes $5, 13, 41$
Class number $1$
Class group Trivial
Galois group 20T174

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 7, -27, 30, -24, 53, -44, 70, -50, 77, -27, 52, -18, 32, -4, 11, -3, 6, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 6*x^18 - 3*x^17 + 11*x^16 - 4*x^15 + 32*x^14 - 18*x^13 + 52*x^12 - 27*x^11 + 77*x^10 - 50*x^9 + 70*x^8 - 44*x^7 + 53*x^6 - 24*x^5 + 30*x^4 - 27*x^3 + 7*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 + 6*x^18 - 3*x^17 + 11*x^16 - 4*x^15 + 32*x^14 - 18*x^13 + 52*x^12 - 27*x^11 + 77*x^10 - 50*x^9 + 70*x^8 - 44*x^7 + 53*x^6 - 24*x^5 + 30*x^4 - 27*x^3 + 7*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 6 x^{18} - 3 x^{17} + 11 x^{16} - 4 x^{15} + 32 x^{14} - 18 x^{13} + 52 x^{12} - 27 x^{11} + 77 x^{10} - 50 x^{9} + 70 x^{8} - 44 x^{7} + 53 x^{6} - 24 x^{5} + 30 x^{4} - 27 x^{3} + 7 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(54320086096828525390625=5^{10}\cdot 13^{4}\cdot 41^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} + \frac{1}{7} a^{17} - \frac{3}{7} a^{16} - \frac{3}{7} a^{15} + \frac{3}{7} a^{14} - \frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{8} + \frac{3}{7} a^{6} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7}$, $\frac{1}{954153880759121} a^{19} + \frac{7328833107142}{136307697251303} a^{18} - \frac{272982321462960}{954153880759121} a^{17} - \frac{29256956833333}{136307697251303} a^{16} - \frac{326558077876423}{954153880759121} a^{15} + \frac{391599725471776}{954153880759121} a^{14} - \frac{40844251575112}{954153880759121} a^{13} - \frac{125098059064068}{954153880759121} a^{12} - \frac{414317166761815}{954153880759121} a^{11} - \frac{346860234631364}{954153880759121} a^{10} - \frac{95970386665596}{954153880759121} a^{9} + \frac{227804907959064}{954153880759121} a^{8} + \frac{404632233072847}{954153880759121} a^{7} - \frac{341030604756845}{954153880759121} a^{6} - \frac{212469584531054}{954153880759121} a^{5} - \frac{438794628078468}{954153880759121} a^{4} + \frac{206428529135940}{954153880759121} a^{3} + \frac{86229213312181}{954153880759121} a^{2} + \frac{429421687076686}{954153880759121} a + \frac{30242605278344}{954153880759121}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 852.798782372 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T174:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 960
The 35 conjugacy class representatives for t20n174
Character table for t20n174 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.1025.1, 5.1.2665.1, 10.2.887778125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ $20$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ R $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$13$13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.12.0.1$x^{12} + x^{2} - x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.2$x^{2} + 246$$2$$1$$1$$C_2$$[\ ]_{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$