Properties

Label 20.0.54296067514...0625.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{10}\cdot 11^{18}$
Root discriminant $19.35$
Ramified primes $5, 11$
Class number $2$
Class group $[2]$
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, -55, 34, -21, 13, -8, 5, -3, 2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 2*x^18 - 3*x^17 + 5*x^16 - 8*x^15 + 13*x^14 - 21*x^13 + 34*x^12 - 55*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1)
 
gp: K = bnfinit(x^20 - x^19 + 2*x^18 - 3*x^17 + 5*x^16 - 8*x^15 + 13*x^14 - 21*x^13 + 34*x^12 - 55*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} - 55 x^{11} + 89 x^{10} + 55 x^{9} + 34 x^{8} + 21 x^{7} + 13 x^{6} + 8 x^{5} + 5 x^{4} + 3 x^{3} + 2 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(54296067514572573056640625=5^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(55=5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{55}(1,·)$, $\chi_{55}(4,·)$, $\chi_{55}(6,·)$, $\chi_{55}(9,·)$, $\chi_{55}(14,·)$, $\chi_{55}(16,·)$, $\chi_{55}(19,·)$, $\chi_{55}(21,·)$, $\chi_{55}(24,·)$, $\chi_{55}(26,·)$, $\chi_{55}(29,·)$, $\chi_{55}(31,·)$, $\chi_{55}(34,·)$, $\chi_{55}(36,·)$, $\chi_{55}(39,·)$, $\chi_{55}(41,·)$, $\chi_{55}(46,·)$, $\chi_{55}(49,·)$, $\chi_{55}(51,·)$, $\chi_{55}(54,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{89} a^{11} - \frac{34}{89}$, $\frac{1}{89} a^{12} - \frac{34}{89} a$, $\frac{1}{89} a^{13} - \frac{34}{89} a^{2}$, $\frac{1}{89} a^{14} - \frac{34}{89} a^{3}$, $\frac{1}{89} a^{15} - \frac{34}{89} a^{4}$, $\frac{1}{89} a^{16} - \frac{34}{89} a^{5}$, $\frac{1}{89} a^{17} - \frac{34}{89} a^{6}$, $\frac{1}{89} a^{18} - \frac{34}{89} a^{7}$, $\frac{1}{89} a^{19} - \frac{34}{89} a^{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{89} a^{13} - \frac{233}{89} a^{2} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 140644.599182 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, \(\Q(\zeta_{11})\), 10.0.7368586534375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$