Normalized defining polynomial
\( x^{20} - 10 x^{18} + 49 x^{16} - 152 x^{14} + 304 x^{12} - 368 x^{10} + 249 x^{8} - 100 x^{6} + 76 x^{4} - 80 x^{2} + 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(541040645705284358852575232=2^{37}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{588} a^{16} - \frac{2}{147} a^{14} - \frac{83}{588} a^{12} + \frac{11}{294} a^{10} - \frac{5}{147} a^{8} - \frac{5}{147} a^{6} + \frac{59}{196} a^{4} + \frac{37}{98} a^{2} - \frac{5}{147}$, $\frac{1}{1176} a^{17} - \frac{1}{147} a^{15} + \frac{505}{1176} a^{13} - \frac{283}{588} a^{11} - \frac{5}{294} a^{9} + \frac{71}{147} a^{7} + \frac{59}{392} a^{5} + \frac{37}{196} a^{3} + \frac{71}{147} a$, $\frac{1}{2352} a^{18} - \frac{1}{4} a^{15} + \frac{3}{16} a^{14} - \frac{1}{2} a^{13} + \frac{187}{392} a^{12} - \frac{1}{4} a^{11} + \frac{13}{196} a^{10} + \frac{17}{98} a^{8} - \frac{1159}{2352} a^{6} - \frac{17}{56} a^{4} - \frac{1}{4} a^{3} + \frac{73}{147} a^{2} - \frac{10}{147}$, $\frac{1}{4704} a^{19} - \frac{1}{1176} a^{16} - \frac{5}{32} a^{15} - \frac{143}{588} a^{14} + \frac{187}{784} a^{13} + \frac{83}{1176} a^{12} + \frac{111}{392} a^{11} + \frac{34}{147} a^{10} - \frac{81}{196} a^{9} + \frac{5}{294} a^{8} + \frac{1193}{4704} a^{7} - \frac{71}{147} a^{6} - \frac{17}{112} a^{5} - \frac{59}{392} a^{4} - \frac{1}{588} a^{3} - \frac{43}{98} a^{2} + \frac{137}{294} a - \frac{71}{147}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{99}{196} a^{18} - \frac{891}{196} a^{16} + \frac{3943}{196} a^{14} - \frac{1567}{28} a^{12} + \frac{1327}{14} a^{10} - 84 a^{8} + \frac{6175}{196} a^{6} - \frac{2405}{196} a^{4} + \frac{2329}{98} a^{2} - \frac{681}{49} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1582244.79704 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.3.31684.1, 10.0.64248054784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.9.1 | $x^{4} + 6 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.12.24.96 | $x^{12} + 12 x^{11} - 10 x^{10} + 10 x^{8} + 4 x^{6} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | 12T87 | $[2, 2, 2, 3, 3, 3]^{3}$ | |
| 89 | Data not computed | ||||||