Properties

Label 20.0.54025471321...6721.1
Degree $20$
Signature $[0, 10]$
Discriminant $67^{4}\cdot 401^{9}$
Root discriminant $34.41$
Ramified primes $67, 401$
Class number $5$ (GRH)
Class group $[5]$ (GRH)
Galois group $C_2\times C_2^4:D_5$ (as 20T87)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, -432, 1440, -3390, 6344, -9533, 12113, -13199, 12257, -9632, 7228, -5196, 3286, -1900, 975, -447, 182, -62, 20, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 20*x^18 - 62*x^17 + 182*x^16 - 447*x^15 + 975*x^14 - 1900*x^13 + 3286*x^12 - 5196*x^11 + 7228*x^10 - 9632*x^9 + 12257*x^8 - 13199*x^7 + 12113*x^6 - 9533*x^5 + 6344*x^4 - 3390*x^3 + 1440*x^2 - 432*x + 81)
 
gp: K = bnfinit(x^20 - 5*x^19 + 20*x^18 - 62*x^17 + 182*x^16 - 447*x^15 + 975*x^14 - 1900*x^13 + 3286*x^12 - 5196*x^11 + 7228*x^10 - 9632*x^9 + 12257*x^8 - 13199*x^7 + 12113*x^6 - 9533*x^5 + 6344*x^4 - 3390*x^3 + 1440*x^2 - 432*x + 81, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} + 20 x^{18} - 62 x^{17} + 182 x^{16} - 447 x^{15} + 975 x^{14} - 1900 x^{13} + 3286 x^{12} - 5196 x^{11} + 7228 x^{10} - 9632 x^{9} + 12257 x^{8} - 13199 x^{7} + 12113 x^{6} - 9533 x^{5} + 6344 x^{4} - 3390 x^{3} + 1440 x^{2} - 432 x + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5402547132170496407507117146721=67^{4}\cdot 401^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $67, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{4}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{9} a^{11} + \frac{4}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{16524994697291129370387593643} a^{19} + \frac{236887579186076038145559856}{16524994697291129370387593643} a^{18} - \frac{2037918871671607735369215889}{16524994697291129370387593643} a^{17} - \frac{647107725662899654110613607}{16524994697291129370387593643} a^{16} - \frac{30209388114892449777382435}{16524994697291129370387593643} a^{15} - \frac{392597117136822959945198182}{1836110521921236596709732627} a^{14} - \frac{897406585580190862343098256}{5508331565763709790129197881} a^{13} - \frac{3418370674064156908413339004}{16524994697291129370387593643} a^{12} + \frac{330517504656488715534081655}{869736563015322598441452297} a^{11} - \frac{114899110039541996043820273}{1836110521921236596709732627} a^{10} + \frac{7630638351762085374784440529}{16524994697291129370387593643} a^{9} + \frac{6412649563765352401636873402}{16524994697291129370387593643} a^{8} - \frac{970172917247065910643948751}{16524994697291129370387593643} a^{7} + \frac{6334878643034663579728236139}{16524994697291129370387593643} a^{6} - \frac{3420161096604445621785485185}{16524994697291129370387593643} a^{5} + \frac{4520051894347233082122633322}{16524994697291129370387593643} a^{4} - \frac{1668822802120383871807764088}{16524994697291129370387593643} a^{3} + \frac{159599205862006310194320418}{1836110521921236596709732627} a^{2} - \frac{29185012433340989402563912}{96637395890591399826828033} a + \frac{207217315842417295625079595}{612036840640412198903244209}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4253434.60225 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:D_5$ (as 20T87):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 320
The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$
Character table for $C_2\times C_2^4:D_5$

Intermediate fields

5.5.160801.1, 10.10.116071900626889.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$67$$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.4.2.1$x^{4} + 1541 x^{2} + 646416$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
67.4.2.1$x^{4} + 1541 x^{2} + 646416$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
401Data not computed