Properties

Label 20.0.53950007870...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{38}\cdot 3^{16}\cdot 5^{15}\cdot 7^{17}\cdot 11^{10}\cdot 19^{5}$
Root discriminant $1087.93$
Ramified primes $2, 3, 5, 7, 11, 19$
Class number Not computed
Class group Not computed
Galois group $D_4\times F_5$ (as 20T42)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![709016550047036, -1066289337176448, 893163408031104, -477951506932032, 184031339300816, -54255565782264, 11914781620224, -1752566231808, 112702188032, 14654077200, -3602584704, 90853056, 54010144, -6315120, -45000, -1764, 7888, 0, -120, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 120*x^18 + 7888*x^16 - 1764*x^15 - 45000*x^14 - 6315120*x^13 + 54010144*x^12 + 90853056*x^11 - 3602584704*x^10 + 14654077200*x^9 + 112702188032*x^8 - 1752566231808*x^7 + 11914781620224*x^6 - 54255565782264*x^5 + 184031339300816*x^4 - 477951506932032*x^3 + 893163408031104*x^2 - 1066289337176448*x + 709016550047036)
 
gp: K = bnfinit(x^20 - 120*x^18 + 7888*x^16 - 1764*x^15 - 45000*x^14 - 6315120*x^13 + 54010144*x^12 + 90853056*x^11 - 3602584704*x^10 + 14654077200*x^9 + 112702188032*x^8 - 1752566231808*x^7 + 11914781620224*x^6 - 54255565782264*x^5 + 184031339300816*x^4 - 477951506932032*x^3 + 893163408031104*x^2 - 1066289337176448*x + 709016550047036, 1)
 

Normalized defining polynomial

\( x^{20} - 120 x^{18} + 7888 x^{16} - 1764 x^{15} - 45000 x^{14} - 6315120 x^{13} + 54010144 x^{12} + 90853056 x^{11} - 3602584704 x^{10} + 14654077200 x^{9} + 112702188032 x^{8} - 1752566231808 x^{7} + 11914781620224 x^{6} - 54255565782264 x^{5} + 184031339300816 x^{4} - 477951506932032 x^{3} + 893163408031104 x^{2} - 1066289337176448 x + 709016550047036 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5395000787036562175590777878325808267813453824000000000000000=2^{38}\cdot 3^{16}\cdot 5^{15}\cdot 7^{17}\cdot 11^{10}\cdot 19^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1087.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} - \frac{2}{7} a^{7} - \frac{1}{7} a^{5} + \frac{1}{7} a^{3}$, $\frac{1}{28} a^{10} + \frac{3}{7} a^{8} - \frac{2}{7} a^{6} + \frac{2}{7} a^{4} - \frac{1}{2}$, $\frac{1}{28} a^{11} - \frac{3}{7} a^{7} - \frac{2}{7} a^{5} - \frac{3}{7} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{12} - \frac{3}{7} a^{8} - \frac{2}{7} a^{6} - \frac{3}{7} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{28} a^{13} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{1}{14} a^{3}$, $\frac{1}{28} a^{14} - \frac{1}{7} a^{8} + \frac{1}{7} a^{6} - \frac{1}{14} a^{4}$, $\frac{1}{2156} a^{15} + \frac{1}{154} a^{14} - \frac{1}{98} a^{13} - \frac{1}{77} a^{12} - \frac{9}{539} a^{11} - \frac{3}{308} a^{10} - \frac{36}{539} a^{9} - \frac{20}{77} a^{8} - \frac{128}{539} a^{7} - \frac{26}{77} a^{6} - \frac{13}{1078} a^{5} - \frac{9}{77} a^{4} + \frac{17}{77} a^{3} + \frac{4}{11} a^{2} - \frac{1}{2}$, $\frac{1}{58212} a^{16} + \frac{2}{14553} a^{15} + \frac{433}{58212} a^{14} + \frac{437}{29106} a^{13} - \frac{31}{1764} a^{12} - \frac{89}{19404} a^{11} - \frac{197}{14553} a^{10} + \frac{1000}{14553} a^{9} + \frac{2419}{4851} a^{8} - \frac{5497}{14553} a^{7} - \frac{3065}{29106} a^{6} + \frac{1147}{4851} a^{5} - \frac{103}{1386} a^{4} + \frac{971}{2079} a^{3} + \frac{73}{594} a^{2} + \frac{1}{54} a + \frac{10}{27}$, $\frac{1}{1571724} a^{17} + \frac{1}{261954} a^{16} - \frac{8}{130977} a^{15} + \frac{7379}{1571724} a^{14} - \frac{6707}{392931} a^{13} - \frac{2293}{130977} a^{12} + \frac{1895}{112266} a^{11} + \frac{2977}{785862} a^{10} + \frac{9172}{392931} a^{9} - \frac{66694}{392931} a^{8} - \frac{90913}{785862} a^{7} - \frac{97633}{392931} a^{6} + \frac{5387}{130977} a^{5} - \frac{41963}{112266} a^{4} - \frac{13526}{56133} a^{3} - \frac{13}{33} a^{2} - \frac{2}{81} a - \frac{74}{729}$, $\frac{1}{16338070980} a^{18} + \frac{13}{47632860} a^{17} + \frac{989}{151278435} a^{16} + \frac{494441}{2334010140} a^{15} + \frac{13873561}{5446023660} a^{14} + \frac{6413783}{466802028} a^{13} + \frac{27339787}{4084517745} a^{12} - \frac{1364501}{259334460} a^{11} - \frac{4642885}{272301183} a^{10} - \frac{456338}{194500845} a^{9} - \frac{781313927}{2723011830} a^{8} - \frac{17077331}{77800338} a^{7} + \frac{1959571}{116700507} a^{6} + \frac{76966333}{1167005070} a^{5} - \frac{24919877}{55571670} a^{4} + \frac{508357}{15155910} a^{3} + \frac{125219}{1323135} a^{2} - \frac{592063}{2165130} a + \frac{33532}{1082565}$, $\frac{1}{181897886133986808411550218526579252881929417000539878323346536748527503315918977270931052817091319856300} a^{19} - \frac{4311323171238195074361008118881857970902855302374445120942039839552903572414165387186195696693}{181897886133986808411550218526579252881929417000539878323346536748527503315918977270931052817091319856300} a^{18} - \frac{4637894673279945397237919271256423569807419787691183079947657318272475773544969587768016890508574}{45474471533496702102887554631644813220482354250134969580836634187131875828979744317732763204272829964075} a^{17} + \frac{242425875415220650876179572986367639110209226489817994222096437311102599081107865776649659760239153}{181897886133986808411550218526579252881929417000539878323346536748527503315918977270931052817091319856300} a^{16} - \frac{1701058207749882413884717830888204014121164233523714576491473520060331215967109749597155114407651679}{45474471533496702102887554631644813220482354250134969580836634187131875828979744317732763204272829964075} a^{15} - \frac{640507074652408924240722492096501246401511183493560831953124695422869121587059998849646073067962641563}{90948943066993404205775109263289626440964708500269939161673268374263751657959488635465526408545659928150} a^{14} + \frac{9951563896358225582887688179484090871760600879948118268895592488743970381122568252863095652780312569}{8268085733363036745979555387571784221905882590933630832879388034023977423450862603224138764413241811650} a^{13} + \frac{2437038999388500620387490768427058404786989567639103000613095535826170395364099697142161701766300478681}{181897886133986808411550218526579252881929417000539878323346536748527503315918977270931052817091319856300} a^{12} - \frac{724656986636905575144868361233060399285226065446374637894822156290915352140311775369760525521232881513}{60632628711328936137183406175526417627309805666846626107782178916175834438639659090310350939030439952100} a^{11} + \frac{60177894265540966391633022996938339770907840513386584568340552060336658560456301214861444557105206743}{30316314355664468068591703087763208813654902833423313053891089458087917219319829545155175469515219976050} a^{10} - \frac{246936921732950398071396143641629671949410135950873370155223947721530771374556412080023259859404002061}{10105438118554822689530567695921069604551634277807771017963696486029305739773276515051725156505073325350} a^{9} + \frac{347766923970818158818140455854685574263294774321363266913168890214498017529755702531109600609150980823}{10105438118554822689530567695921069604551634277807771017963696486029305739773276515051725156505073325350} a^{8} + \frac{443250538011024329670076135165331371592237025478012680129843082659782767565807802666277132834205916907}{1299270615242762917225358703761280377728067264289570559452475262489482166542278409078078948693509427545} a^{7} + \frac{568763538408963332890314323918391535744371634487106888123680600421501693687469680580661806358064813463}{1181155104766148106568507912510254888843697512990518690411341147717711060492980371889162680630463115950} a^{6} - \frac{2994034884410182549594872861760775853368696068366856643678277313421239376332371299258836079513626602879}{6496353076213814586126793518806401888640336321447852797262376312447410832711392045390394743467547137725} a^{5} - \frac{221344910005285756887550952576713231377232894457345357538983118460126686116094206776130112539721227738}{928050439459116369446684788400914555520048045921121828180339473206772976101627435055770677638221019675} a^{4} + \frac{283069594790450162333639293917046277257509789894832142038232143612934835476222607279537293518166516}{185610087891823273889336957680182911104009609184224365636067894641354595220325487011154135527644203935} a^{3} + \frac{27876063418264988843849339938323592572061399213816888157260860284569552474881973848648523802971690573}{265157268416890391270481368114547015862870870263177665194382706630506564600464981444505907896634577050} a^{2} + \frac{7515047569880472245777392830415730145940412990371522844542225191389857729133256390097927893356107}{964208248788692331892659520416534603137712255502464237070482569565478416728963568889112392351398462} a + \frac{2319923778059292118366196200262466305059483223934710890020972591929085582374037986836784109567989731}{12052603109858654148658244005206682539221403193780802963381032119568480209112044611113904904392480775}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4\times F_5$ (as 20T42):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 25 conjugacy class representatives for $D_4\times F_5$
Character table for $D_4\times F_5$ is not computed

Intermediate fields

\(\Q(\sqrt{-110}) \), 4.0.128744000.6, 5.1.388962000.4, 10.0.249504125867966914560000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R R ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.19.1$x^{10} - 2$$10$$1$$19$$F_{5}\times C_2$$[3]_{5}^{4}$
2.10.19.1$x^{10} - 2$$10$$1$$19$$F_{5}\times C_2$$[3]_{5}^{4}$
$3$3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.10.8.1$x^{10} - 3 x^{5} + 18$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
5Data not computed
$7$7.10.9.2$x^{10} + 14$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
7.10.8.1$x^{10} - 7 x^{5} + 147$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$