Normalized defining polynomial
\( x^{20} - x^{19} + 14 x^{18} - 24 x^{17} - 29 x^{16} - 308 x^{15} - 769 x^{14} - 627 x^{13} + 2799 x^{12} + 17107 x^{11} + 50642 x^{10} + 95285 x^{9} + 130902 x^{8} + 122101 x^{7} + 52537 x^{6} - 5128 x^{5} - 13197 x^{4} + 942 x^{3} + 15840 x^{2} - 10752 x + 5136 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(537935755789407686830516845703125=3^{16}\cdot 5^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{24} a^{9} + \frac{5}{24} a^{7} - \frac{1}{2} a^{6} + \frac{11}{24} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{16} - \frac{1}{12} a^{14} - \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{24} a^{10} + \frac{5}{24} a^{8} + \frac{11}{24} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{5}{24} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{11}{24} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{18} - \frac{1}{4} a^{13} - \frac{5}{24} a^{12} + \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{5}{24} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{31104147500913166859606667274366549604099448} a^{19} + \frac{6524521026124176290812422577109130547802}{3888018437614145857450833409295818700512431} a^{18} + \frac{60114011958981442423800446568720782961493}{7776036875228291714901666818591637401024862} a^{17} - \frac{281840049884181459954753224346280037615209}{15552073750456583429803333637183274802049724} a^{16} + \frac{11276006930860578067908337871099666732322}{1296006145871381952483611136431939566837477} a^{15} - \frac{9410904957154429631354046879539133133901}{7776036875228291714901666818591637401024862} a^{14} - \frac{4792387867542123020177053816276780155881573}{31104147500913166859606667274366549604099448} a^{13} + \frac{655465363397973269174272192057334877769378}{3888018437614145857450833409295818700512431} a^{12} - \frac{5427781229538664709805594191699766124508321}{31104147500913166859606667274366549604099448} a^{11} - \frac{249429817530816031300562271633568226644445}{15552073750456583429803333637183274802049724} a^{10} + \frac{770978023104900081776353757611939410885433}{10368049166971055619868889091455516534699816} a^{9} + \frac{1830359033656622461104930954285882230587657}{15552073750456583429803333637183274802049724} a^{8} + \frac{6950778482183352039868812089749774929321811}{31104147500913166859606667274366549604099448} a^{7} + \frac{737051439476501441702537945242315343970375}{5184024583485527809934444545727758267349908} a^{6} - \frac{1535004296333860204725390995973632542000663}{3888018437614145857450833409295818700512431} a^{5} + \frac{337994361260255548828898777651683823213204}{1296006145871381952483611136431939566837477} a^{4} - \frac{1359953504555432998778215779324923522808901}{5184024583485527809934444545727758267349908} a^{3} - \frac{1729176023476930247567026734777702408653405}{5184024583485527809934444545727758267349908} a^{2} + \frac{845807277419424000045180070598806767366473}{2592012291742763904967222272863879133674954} a - \frac{156106632175114847036308666315593899336441}{1296006145871381952483611136431939566837477}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315151166.6618722 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 5.1.1711125.1, 10.2.38063333953125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||