Normalized defining polynomial
\( x^{20} - 51 x^{15} + 1107 x^{10} - 12393 x^{5} + 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(537935755789407686830516845703125=3^{16}\cdot 5^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{9} + \frac{1}{3} a^{4}$, $\frac{1}{27} a^{10} + \frac{1}{9} a^{5}$, $\frac{1}{27} a^{11} + \frac{1}{9} a^{6}$, $\frac{1}{81} a^{12} + \frac{1}{27} a^{7} - \frac{1}{3} a^{2}$, $\frac{1}{81} a^{13} + \frac{1}{27} a^{8} - \frac{1}{3} a^{3}$, $\frac{1}{243} a^{14} + \frac{1}{81} a^{9} + \frac{2}{9} a^{4}$, $\frac{1}{729} a^{15} + \frac{1}{243} a^{10} + \frac{2}{27} a^{5}$, $\frac{1}{3645} a^{16} + \frac{1}{3645} a^{15} - \frac{2}{1215} a^{14} - \frac{1}{405} a^{12} + \frac{1}{1215} a^{11} + \frac{2}{243} a^{10} - \frac{2}{405} a^{9} + \frac{2}{45} a^{8} + \frac{8}{135} a^{7} + \frac{4}{27} a^{6} - \frac{22}{135} a^{5} - \frac{4}{45} a^{4} + \frac{1}{3} a^{3} + \frac{7}{15} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{10935} a^{17} + \frac{1}{3645} a^{15} - \frac{1}{1215} a^{14} - \frac{2}{405} a^{13} + \frac{19}{3645} a^{12} + \frac{2}{135} a^{11} - \frac{17}{1215} a^{10} - \frac{2}{81} a^{9} + \frac{4}{135} a^{8} - \frac{28}{405} a^{7} + \frac{2}{45} a^{6} + \frac{1}{27} a^{5} + \frac{13}{45} a^{4} + \frac{4}{15} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{32805} a^{18} + \frac{2}{3645} a^{15} + \frac{2}{1215} a^{14} + \frac{64}{10935} a^{13} - \frac{1}{405} a^{12} + \frac{1}{135} a^{11} + \frac{4}{243} a^{10} - \frac{7}{405} a^{9} + \frac{14}{1215} a^{8} - \frac{19}{135} a^{7} - \frac{1}{9} a^{6} - \frac{8}{135} a^{5} - \frac{8}{45} a^{4} + \frac{4}{45} a^{3} - \frac{2}{15} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{98415} a^{19} - \frac{2}{3645} a^{15} + \frac{2}{6561} a^{14} - \frac{2}{405} a^{13} - \frac{1}{135} a^{11} - \frac{2}{1215} a^{10} + \frac{131}{3645} a^{9} - \frac{2}{135} a^{8} + \frac{2}{15} a^{7} - \frac{7}{45} a^{6} + \frac{1}{27} a^{5} + \frac{52}{135} a^{4} - \frac{4}{15} a^{3} + \frac{2}{5} a - \frac{1}{5}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40743102.9736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 5.5.22244625.1, 10.10.6432703438078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||