Normalized defining polynomial
\( x^{20} - x^{19} + 2 x^{17} + 8 x^{16} + 21 x^{15} + 32 x^{14} - 8 x^{13} + 17 x^{12} - 78 x^{11} + 282 x^{10} + 462 x^{9} + 302 x^{8} + 52 x^{7} - 98 x^{6} - 84 x^{5} - 27 x^{4} + 7 x^{3} + 10 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(536870912000000000000000=2^{44}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{9} + \frac{1}{5} a^{6} + \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{1}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{1}{5} a^{8} + \frac{1}{5} a^{5} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{1}{5}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{12} + \frac{2}{5} a^{9} + \frac{2}{5} a^{6} + \frac{2}{5} a^{3} + \frac{2}{5} a - \frac{1}{10}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{13} + \frac{2}{5} a^{10} + \frac{2}{5} a^{7} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{21610} a^{18} + \frac{431}{10805} a^{17} + \frac{213}{4322} a^{16} + \frac{981}{10805} a^{15} - \frac{1863}{21610} a^{14} - \frac{1066}{10805} a^{13} + \frac{1027}{21610} a^{12} - \frac{629}{10805} a^{11} - \frac{346}{10805} a^{10} - \frac{2689}{10805} a^{9} - \frac{1584}{10805} a^{8} - \frac{2461}{10805} a^{7} - \frac{1624}{10805} a^{6} - \frac{4144}{10805} a^{5} - \frac{2171}{10805} a^{4} + \frac{3703}{10805} a^{3} - \frac{1485}{4322} a^{2} + \frac{4039}{10805} a - \frac{1611}{4322}$, $\frac{1}{50274412722110} a^{19} + \frac{441212326}{25137206361055} a^{18} - \frac{1190617006952}{25137206361055} a^{17} - \frac{1584128515441}{50274412722110} a^{16} + \frac{255919186951}{10054882544422} a^{15} + \frac{359401331043}{5027441272211} a^{14} + \frac{435549748343}{25137206361055} a^{13} - \frac{3314300944831}{50274412722110} a^{12} - \frac{2018073398323}{5027441272211} a^{11} - \frac{4198600735447}{25137206361055} a^{10} - \frac{7715244288243}{25137206361055} a^{9} - \frac{653227244142}{5027441272211} a^{8} - \frac{5080319750457}{25137206361055} a^{7} + \frac{9835937399922}{25137206361055} a^{6} - \frac{1665931383467}{5027441272211} a^{5} - \frac{843534631392}{5027441272211} a^{4} - \frac{11341196986073}{50274412722110} a^{3} + \frac{3565740720977}{25137206361055} a^{2} - \frac{11800394419379}{25137206361055} a - \frac{13215028701711}{50274412722110}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{12939321934576}{25137206361055} a^{19} - \frac{7519882436982}{25137206361055} a^{18} - \frac{1525222143982}{5027441272211} a^{17} + \frac{5033594500842}{5027441272211} a^{16} + \frac{119988710077212}{25137206361055} a^{15} + \frac{306886992689078}{25137206361055} a^{14} + \frac{505469903193998}{25137206361055} a^{13} + \frac{5688015974078}{25137206361055} a^{12} + \frac{64330806931688}{25137206361055} a^{11} - \frac{944295886411252}{25137206361055} a^{10} + \frac{3277034230701268}{25137206361055} a^{9} + \frac{7574105508294573}{25137206361055} a^{8} + \frac{6073450638362028}{25137206361055} a^{7} + \frac{238469425502808}{25137206361055} a^{6} - \frac{2150602951119312}{25137206361055} a^{5} - \frac{1661807888977958}{25137206361055} a^{4} - \frac{81214305417920}{5027441272211} a^{3} + \frac{257869297557998}{25137206361055} a^{2} + \frac{183180531707738}{25137206361055} a + \frac{61067582174651}{25137206361055} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23009.4273672 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.256000.1, 10.2.327680000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||