Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 5 x^{17} - 19 x^{16} + 50 x^{15} + 54 x^{14} - 40 x^{13} - 199 x^{12} + 840 x^{11} + 620 x^{10} - 1279 x^{9} + 1556 x^{8} + 5430 x^{7} + 3925 x^{6} - 1385 x^{5} + 2240 x^{4} + 2325 x^{3} + 1225 x^{2} + 25 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5337142039963166778564453125=5^{15}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{10} a^{16} + \frac{1}{10} a^{15} + \frac{1}{10} a^{12} + \frac{2}{5} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} + \frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{2}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{18} + \frac{1}{10} a^{15} + \frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{1}{2} a^{10} + \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1109624125897833818503322272586484550} a^{19} + \frac{25277064716404198236814452398582663}{554812062948916909251661136293242275} a^{18} + \frac{2211302209396121618505522296969021}{221924825179566763700664454517296910} a^{17} - \frac{2985437273225229592472834033646329}{221924825179566763700664454517296910} a^{16} - \frac{77617666923965521013956108174978072}{554812062948916909251661136293242275} a^{15} - \frac{15621440729532865925593296106844169}{110962412589783381850332227258648455} a^{14} - \frac{98269321072279400910902475417347178}{554812062948916909251661136293242275} a^{13} - \frac{9469023098796717679699255248380809}{44384965035913352740132890903459382} a^{12} + \frac{57370654206334931646667951129943133}{554812062948916909251661136293242275} a^{11} - \frac{9198580663172813067695369802715176}{22192482517956676370066445451729691} a^{10} + \frac{6288749752104712579107128146852461}{221924825179566763700664454517296910} a^{9} - \frac{107529354471926795127737353337762742}{554812062948916909251661136293242275} a^{8} - \frac{104814870533440827125661252101813192}{554812062948916909251661136293242275} a^{7} - \frac{7256323117176685618419655515913859}{44384965035913352740132890903459382} a^{6} + \frac{24883537927648188413878742163740221}{110962412589783381850332227258648455} a^{5} - \frac{57333215948427563518844250510262897}{221924825179566763700664454517296910} a^{4} - \frac{83237293360162516435646188204376111}{221924825179566763700664454517296910} a^{3} - \frac{8949325509928637214223884360491575}{44384965035913352740132890903459382} a^{2} + \frac{162623925591655705229516728683691}{752287542981582249832760862770498} a + \frac{11938344268209793265074191380940755}{44384965035913352740132890903459382}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 367558.874812 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.351125.1, 5.1.351125.1 x5, 10.2.616443828125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.351125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |