Normalized defining polynomial
\( x^{20} - x^{19} + 5 x^{18} - 2 x^{17} + 19 x^{16} - 6 x^{15} + 23 x^{14} + 33 x^{13} + 20 x^{12} + 12 x^{11} + 74 x^{10} + 6 x^{9} + 102 x^{8} - 47 x^{7} + 97 x^{6} - 38 x^{5} + 48 x^{4} - 22 x^{3} + 16 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(530929408000357237198679361=3^{10}\cdot 111847^{2}\cdot 847789^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 111847, 847789$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{12576498905395} a^{19} - \frac{3698766099172}{12576498905395} a^{18} + \frac{5521915809767}{12576498905395} a^{17} + \frac{4380626021141}{12576498905395} a^{16} + \frac{2831346423623}{12576498905395} a^{15} + \frac{1309311225696}{12576498905395} a^{14} - \frac{1921274941523}{12576498905395} a^{13} + \frac{7500397166}{12576498905395} a^{12} + \frac{1499019750609}{12576498905395} a^{11} + \frac{2833152197328}{12576498905395} a^{10} - \frac{2095580846569}{12576498905395} a^{9} + \frac{558245242776}{2515299781079} a^{8} - \frac{299134635058}{12576498905395} a^{7} - \frac{3490014912829}{12576498905395} a^{6} + \frac{2695744129621}{12576498905395} a^{5} - \frac{5789210271804}{12576498905395} a^{4} + \frac{5838682742342}{12576498905395} a^{3} - \frac{3310170426974}{12576498905395} a^{2} - \frac{426043966390}{2515299781079} a + \frac{519507451956}{12576498905395}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3361633261626}{12576498905395} a^{19} - \frac{3623347259102}{12576498905395} a^{18} + \frac{17114844342352}{12576498905395} a^{17} - \frac{7763233506459}{12576498905395} a^{16} + \frac{64212095893223}{12576498905395} a^{15} - \frac{23608941050929}{12576498905395} a^{14} + \frac{78858766968322}{12576498905395} a^{13} + \frac{110612692903771}{12576498905395} a^{12} + \frac{56775544615164}{12576498905395} a^{11} + \frac{44129580534528}{12576498905395} a^{10} + \frac{258084852658526}{12576498905395} a^{9} + \frac{1104763728065}{2515299781079} a^{8} + \frac{348735687556197}{12576498905395} a^{7} - \frac{155733737429844}{12576498905395} a^{6} + \frac{346459276204521}{12576498905395} a^{5} - \frac{126694173253874}{12576498905395} a^{4} + \frac{160929947023112}{12576498905395} a^{3} - \frac{49403472273574}{12576498905395} a^{2} + \frac{10667919130648}{2515299781079} a - \frac{729562165914}{12576498905395} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249242.742274 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.8.94822656283.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 111847 | Data not computed | ||||||
| 847789 | Data not computed | ||||||