Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 12 x^{17} + 30 x^{16} - 132 x^{15} + 402 x^{14} - 796 x^{13} + 645 x^{12} - 176 x^{11} - 48 x^{10} + 56 x^{9} + 7572 x^{8} - 8648 x^{7} - 520 x^{6} + 1408 x^{5} + 3012 x^{4} - 2544 x^{3} + 544 x^{2} - 32 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5287094430615384550826573824=2^{40}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{11} + \frac{3}{8} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{136} a^{16} - \frac{1}{34} a^{15} - \frac{1}{136} a^{14} + \frac{1}{34} a^{13} - \frac{7}{68} a^{12} + \frac{5}{68} a^{11} - \frac{9}{68} a^{10} - \frac{13}{68} a^{9} + \frac{11}{136} a^{8} + \frac{33}{68} a^{7} + \frac{29}{136} a^{6} - \frac{1}{68} a^{5} - \frac{1}{68} a^{4} - \frac{15}{34} a^{3} - \frac{33}{68} a^{2} + \frac{11}{34} a - \frac{7}{34}$, $\frac{1}{136} a^{17} + \frac{1}{68} a^{13} - \frac{3}{34} a^{12} - \frac{3}{34} a^{11} + \frac{1}{34} a^{10} - \frac{25}{136} a^{9} + \frac{1}{17} a^{8} - \frac{8}{17} a^{7} + \frac{3}{34} a^{6} - \frac{5}{68} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{2}{17} a^{2} - \frac{7}{17} a + \frac{3}{17}$, $\frac{1}{54128} a^{18} + \frac{35}{27064} a^{17} + \frac{23}{6766} a^{16} + \frac{941}{27064} a^{15} - \frac{465}{27064} a^{14} - \frac{481}{13532} a^{13} - \frac{1051}{27064} a^{12} + \frac{151}{6766} a^{11} - \frac{13155}{54128} a^{10} + \frac{5883}{27064} a^{9} - \frac{4843}{27064} a^{8} - \frac{5019}{27064} a^{7} - \frac{3771}{13532} a^{6} - \frac{3355}{6766} a^{5} + \frac{130}{3383} a^{4} - \frac{3699}{13532} a^{3} + \frac{1447}{13532} a^{2} - \frac{1089}{3383} a + \frac{841}{6766}$, $\frac{1}{338111133295736990425572112} a^{19} + \frac{1793200809403236015885}{338111133295736990425572112} a^{18} - \frac{33380576476259375082071}{24150795235409785030398008} a^{17} + \frac{302990405517249914283005}{84527783323934247606393028} a^{16} - \frac{1871386789667884965066625}{84527783323934247606393028} a^{15} - \frac{567693488669438007489379}{84527783323934247606393028} a^{14} + \frac{2465089956941485781076817}{169055566647868495212786056} a^{13} + \frac{1728897931918146533297815}{169055566647868495212786056} a^{12} - \frac{27661811879343120934860947}{338111133295736990425572112} a^{11} - \frac{43678712045292394469661791}{338111133295736990425572112} a^{10} + \frac{10421334290905117609882213}{42263891661967123803196514} a^{9} - \frac{7447976294650698917852971}{169055566647868495212786056} a^{8} - \frac{23909509203110961594588507}{169055566647868495212786056} a^{7} + \frac{20471181186990240994582865}{169055566647868495212786056} a^{6} - \frac{37073080837665675137131985}{84527783323934247606393028} a^{5} - \frac{1460052088934146955550613}{42263891661967123803196514} a^{4} + \frac{2270915865437085808393881}{6037698808852446257599502} a^{3} - \frac{12982593874689605146202743}{42263891661967123803196514} a^{2} + \frac{6446025743774904499112580}{21131945830983561901598257} a - \frac{5021904995954097869821386}{21131945830983561901598257}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3559558.36635 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-74}) \), \(\Q(\sqrt{-37}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-37})\), 5.1.87616.1 x5, 10.0.2272262782976.1, 10.0.18178102263808.2 x5, 10.2.982600122368.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |