Normalized defining polynomial
\( x^{20} - 8 x^{19} + 38 x^{18} - 164 x^{17} + 555 x^{16} - 1484 x^{15} + 3300 x^{14} - 5808 x^{13} + 8423 x^{12} - 9552 x^{11} + 8814 x^{10} - 5980 x^{9} + 4373 x^{8} - 3572 x^{7} + 3752 x^{6} - 1168 x^{5} + 1180 x^{4} + 536 x^{3} + 312 x^{2} - 64 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5287094430615384550826573824=2^{40}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{136} a^{17} - \frac{1}{68} a^{16} + \frac{3}{136} a^{15} - \frac{3}{68} a^{14} + \frac{7}{136} a^{13} + \frac{15}{136} a^{12} + \frac{13}{136} a^{11} - \frac{11}{136} a^{10} - \frac{9}{68} a^{9} - \frac{25}{136} a^{8} + \frac{27}{68} a^{7} - \frac{7}{136} a^{6} + \frac{1}{17} a^{5} - \frac{19}{68} a^{4} - \frac{1}{34} a^{3} - \frac{21}{68} a^{2} + \frac{4}{17} a + \frac{15}{34}$, $\frac{1}{1904} a^{18} + \frac{33}{1904} a^{16} - \frac{1}{28} a^{15} - \frac{1}{34} a^{14} + \frac{23}{952} a^{13} - \frac{3}{136} a^{12} + \frac{33}{952} a^{11} - \frac{23}{1904} a^{10} - \frac{25}{136} a^{9} + \frac{361}{1904} a^{8} + \frac{365}{952} a^{7} + \frac{473}{952} a^{6} + \frac{139}{476} a^{5} - \frac{22}{119} a^{4} - \frac{123}{476} a^{3} - \frac{50}{119} a^{2} + \frac{75}{238} a + \frac{115}{476}$, $\frac{1}{229937952866437354235797744} a^{19} - \frac{5883216996031054682487}{229937952866437354235797744} a^{18} - \frac{6875836429991413560755}{229937952866437354235797744} a^{17} + \frac{11106645803251754238399223}{229937952866437354235797744} a^{16} + \frac{5715745337733284980230739}{114968976433218677117898872} a^{15} + \frac{5477731296441006803126453}{114968976433218677117898872} a^{14} - \frac{229595171993961861045597}{57484488216609338558949436} a^{13} - \frac{4804501202202459767240197}{57484488216609338558949436} a^{12} - \frac{10984826738128501863336229}{229937952866437354235797744} a^{11} - \frac{16999424908174334666321221}{229937952866437354235797744} a^{10} - \frac{16827949432004390348689037}{229937952866437354235797744} a^{9} + \frac{509164273097282226093351}{4892296869498667111399952} a^{8} - \frac{53994964473227107609459017}{114968976433218677117898872} a^{7} - \frac{27172456364470111166580503}{114968976433218677117898872} a^{6} - \frac{1046544907207815721159539}{28742244108304669279474718} a^{5} - \frac{33984631443086790095293}{14371122054152334639737359} a^{4} - \frac{4445299568713573903535389}{28742244108304669279474718} a^{3} + \frac{1578829394284392674971801}{28742244108304669279474718} a^{2} - \frac{913897635763425716757355}{3381440483329961091702908} a - \frac{6352109871792672294821905}{57484488216609338558949436}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34330567450303}{788169349744091} a^{19} - \frac{154959197590283}{450382485568052} a^{18} + \frac{2552470864763247}{1576338699488182} a^{17} - \frac{21975313950494949}{3152677398976364} a^{16} + \frac{10550267318818785}{450382485568052} a^{15} - \frac{48926731148338772}{788169349744091} a^{14} + \frac{61612280859457139}{450382485568052} a^{13} - \frac{187076864060982804}{788169349744091} a^{12} + \frac{1068168401895602933}{3152677398976364} a^{11} - \frac{168632228684092765}{450382485568052} a^{10} + \frac{1055681154980611323}{3152677398976364} a^{9} - \frac{14283309874633519}{67078242531412} a^{8} + \frac{244248994797265825}{1576338699488182} a^{7} - \frac{101412069048054498}{788169349744091} a^{6} + \frac{111663718202127172}{788169349744091} a^{5} - \frac{47773677670398441}{1576338699488182} a^{4} + \frac{34359932211514354}{788169349744091} a^{3} + \frac{1374013126677575}{46362902926123} a^{2} + \frac{11407456269653903}{788169349744091} a - \frac{8928489512275}{6623271846589} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9117730.40533 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-74}) \), \(\Q(\sqrt{74}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{74})\), 5.1.87616.1 x5, 10.0.2272262782976.1, 10.2.36356204527616.2 x5, 10.0.491300061184.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |