Normalized defining polynomial
\( x^{20} - 7 x^{19} + 2 x^{18} + 77 x^{17} - 40 x^{16} - 515 x^{15} - 469 x^{14} + 3987 x^{13} + 4811 x^{12} - 19300 x^{11} - 31273 x^{10} + 71697 x^{9} + 143855 x^{8} - 306777 x^{7} - 232705 x^{6} + 640998 x^{5} + 637422 x^{4} - 1606905 x^{3} - 390130 x^{2} + 1125311 x + 470981 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(524093678472817852271376481973369=11^{13}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{119} a^{17} - \frac{44}{119} a^{16} - \frac{1}{17} a^{15} - \frac{6}{17} a^{14} - \frac{2}{119} a^{13} + \frac{4}{17} a^{12} - \frac{9}{119} a^{11} + \frac{4}{119} a^{10} + \frac{2}{7} a^{9} + \frac{36}{119} a^{8} + \frac{57}{119} a^{7} + \frac{2}{17} a^{6} + \frac{8}{119} a^{5} + \frac{12}{119} a^{4} + \frac{43}{119} a^{3} + \frac{55}{119} a^{2} + \frac{50}{119} a - \frac{1}{17}$, $\frac{1}{119} a^{18} - \frac{39}{119} a^{16} + \frac{1}{17} a^{15} + \frac{54}{119} a^{14} + \frac{59}{119} a^{13} + \frac{33}{119} a^{12} - \frac{5}{17} a^{11} - \frac{4}{17} a^{10} - \frac{15}{119} a^{9} - \frac{25}{119} a^{8} + \frac{23}{119} a^{7} + \frac{29}{119} a^{6} + \frac{1}{17} a^{5} - \frac{24}{119} a^{4} + \frac{43}{119} a^{3} - \frac{29}{119} a^{2} + \frac{3}{7} a + \frac{7}{17}$, $\frac{1}{18191459846216876035685364855544108881375167587159637} a^{19} - \frac{67365679941695391348596579839933059964978185766}{18191459846216876035685364855544108881375167587159637} a^{18} + \frac{69839707630711401881420565734998964018522987531246}{18191459846216876035685364855544108881375167587159637} a^{17} + \frac{472885520000765444348538561479196438751487730140122}{1070085873306875060922668520914359345963245152185861} a^{16} + \frac{3167937856567180420513755882018919756585541458846358}{18191459846216876035685364855544108881375167587159637} a^{15} - \frac{864393880865804305895147939480828289148915563462771}{2598779978030982290812194979363444125910738226737091} a^{14} + \frac{2999597776413251908833964732660170839484640118257661}{18191459846216876035685364855544108881375167587159637} a^{13} + \frac{9044174658701086266882610963385165862798961774719195}{18191459846216876035685364855544108881375167587159637} a^{12} + \frac{8370474545108522322635379201904100528232453953055720}{18191459846216876035685364855544108881375167587159637} a^{11} + \frac{6668342603893557333709009609569319183272998573488944}{18191459846216876035685364855544108881375167587159637} a^{10} - \frac{1266666808087968454922543225744123421566853855880797}{2598779978030982290812194979363444125910738226737091} a^{9} + \frac{2741077403618067011043901671639342853307019979438944}{18191459846216876035685364855544108881375167587159637} a^{8} - \frac{6998942030393755989780206191386145561317309840316190}{18191459846216876035685364855544108881375167587159637} a^{7} + \frac{7645721110860190634897378362414527627388272052723147}{18191459846216876035685364855544108881375167587159637} a^{6} + \frac{1561128041083949400208580601548118986811090822080404}{18191459846216876035685364855544108881375167587159637} a^{5} - \frac{176633113185976635881564698028261332435783537794727}{18191459846216876035685364855544108881375167587159637} a^{4} + \frac{523017044745173101199985585833332614327786513267500}{1070085873306875060922668520914359345963245152185861} a^{3} - \frac{5900418841679595383309257779097671181775683695672114}{18191459846216876035685364855544108881375167587159637} a^{2} + \frac{1337236467064893097247158569332119529872130292881432}{18191459846216876035685364855544108881375167587159637} a - \frac{923328620013984941836483311643483402569742657733020}{2598779978030982290812194979363444125910738226737091}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 580402652.6153839 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.75449.1, 10.0.36252565459.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 19 | Data not computed | ||||||