Normalized defining polynomial
\( x^{20} - 10 x^{19} + 48 x^{18} - 142 x^{17} + 289 x^{16} - 440 x^{15} + 548 x^{14} - 588 x^{13} + 510 x^{12} - 316 x^{11} + 176 x^{10} - 204 x^{9} + 246 x^{8} - 168 x^{7} + 36 x^{6} + 36 x^{5} - 3 x^{4} - 18 x^{3} + 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5203354710344962567831552=2^{34}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1564} a^{18} - \frac{183}{1564} a^{17} - \frac{27}{391} a^{16} + \frac{80}{391} a^{15} - \frac{7}{391} a^{14} - \frac{5}{34} a^{13} - \frac{3}{23} a^{12} - \frac{105}{782} a^{11} - \frac{127}{782} a^{10} - \frac{106}{391} a^{9} + \frac{156}{391} a^{8} + \frac{301}{782} a^{7} - \frac{301}{782} a^{6} - \frac{174}{391} a^{5} - \frac{49}{782} a^{4} + \frac{174}{391} a^{3} - \frac{729}{1564} a^{2} + \frac{3}{68} a - \frac{205}{782}$, $\frac{1}{1133641940} a^{19} - \frac{138831}{1133641940} a^{18} + \frac{122517599}{1133641940} a^{17} + \frac{59757987}{566820970} a^{16} + \frac{12923653}{56682097} a^{15} - \frac{8215806}{56682097} a^{14} - \frac{28449331}{566820970} a^{13} - \frac{77228453}{566820970} a^{12} + \frac{64268184}{283410485} a^{11} - \frac{55624261}{566820970} a^{10} - \frac{147451311}{566820970} a^{9} + \frac{137103182}{283410485} a^{8} + \frac{63380727}{283410485} a^{7} - \frac{101288453}{566820970} a^{6} + \frac{26437911}{566820970} a^{5} - \frac{60026669}{283410485} a^{4} + \frac{478106043}{1133641940} a^{3} - \frac{93972761}{1133641940} a^{2} - \frac{339890569}{1133641940} a + \frac{63514174}{283410485}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4647789}{56682097} a^{19} + \frac{30387808}{56682097} a^{18} - \frac{74920169}{56682097} a^{17} + \frac{10002271}{56682097} a^{16} + \frac{749973455}{113364194} a^{15} - \frac{986790324}{56682097} a^{14} + \frac{1338113864}{56682097} a^{13} - \frac{1308176110}{56682097} a^{12} + \frac{2290163397}{113364194} a^{11} - \frac{14309945}{2464439} a^{10} - \frac{1264556436}{56682097} a^{9} + \frac{1633977761}{56682097} a^{8} - \frac{286537867}{113364194} a^{7} - \frac{603608886}{56682097} a^{6} - \frac{115882470}{56682097} a^{5} + \frac{960165414}{56682097} a^{4} - \frac{1953594057}{113364194} a^{3} - \frac{122160917}{56682097} a^{2} + \frac{158507188}{56682097} a + \frac{86506641}{56682097} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49980.9250389 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.832.1, 5.1.35152.1, 10.0.79082438656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |