Normalized defining polynomial
\( x^{20} + 90 x^{18} + 2955 x^{16} + 42350 x^{14} + 252865 x^{12} + 666510 x^{10} + 804650 x^{8} + 495425 x^{6} + 162450 x^{4} + 27075 x^{2} + 1805 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(518882447443907149136066436767578125=3^{8}\cdot 5^{31}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{10} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{114} a^{15} - \frac{5}{114} a^{13} - \frac{3}{38} a^{11} - \frac{10}{57} a^{9} - \frac{1}{2} a^{8} - \frac{22}{57} a^{7} - \frac{1}{2} a^{6} - \frac{29}{114} a^{5} - \frac{1}{3} a$, $\frac{1}{114} a^{16} - \frac{5}{114} a^{14} - \frac{3}{38} a^{12} - \frac{10}{57} a^{10} + \frac{13}{114} a^{8} - \frac{1}{2} a^{7} - \frac{29}{114} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{114} a^{17} + \frac{2}{57} a^{13} + \frac{11}{114} a^{11} - \frac{11}{114} a^{9} - \frac{7}{38} a^{7} - \frac{25}{57} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{661740720046428} a^{18} - \frac{2630799979319}{661740720046428} a^{16} + \frac{230002183072}{15039561819237} a^{14} + \frac{1708227490709}{30079123638474} a^{12} + \frac{4355089683095}{661740720046428} a^{10} + \frac{19659177033773}{60158247276948} a^{8} - \frac{1}{2} a^{7} + \frac{1577510299981}{3166223540892} a^{6} - \frac{1}{2} a^{5} - \frac{1084537836862}{8707114737453} a^{4} + \frac{15080651200}{8707114737453} a^{2} - \frac{1}{2} a + \frac{2792443639423}{11609486316604}$, $\frac{1}{1323481440092856} a^{19} - \frac{1}{1323481440092856} a^{18} + \frac{1057981059661}{441160480030952} a^{17} - \frac{1057981059661}{441160480030952} a^{16} + \frac{65384134801}{20052749092316} a^{15} + \frac{859255442561}{60158247276948} a^{14} + \frac{2041447573189}{30079123638474} a^{13} + \frac{166610041240}{15039561819237} a^{12} - \frac{70140135724693}{441160480030952} a^{11} - \frac{219130586540269}{1323481440092856} a^{10} - \frac{5670611293363}{120316494553896} a^{9} + \frac{1186598533145}{40105498184632} a^{8} - \frac{16042494991899}{40105498184632} a^{7} + \frac{15409841719813}{120316494553896} a^{6} - \frac{102162240962927}{661740720046428} a^{5} - \frac{6538039063729}{34828458949812} a^{4} + \frac{2917452230351}{17414229474906} a^{3} - \frac{969970634917}{2902371579151} a^{2} - \frac{14841641714939}{69656917899624} a + \frac{8817042677181}{23218972633208}$
Class group and class number
$C_{109}$, which has order $109$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1041138233112565}{1323481440092856} a^{19} - \frac{2608216055}{8051892024} a^{18} - \frac{1638033039162219}{23218972633208} a^{17} - \frac{233903129045}{8051892024} a^{16} - \frac{46160007388753783}{20052749092316} a^{15} - \frac{346921690595}{365995092} a^{14} - \frac{25785406886248370}{791555885223} a^{13} - \frac{1227393157625}{91498773} a^{12} - \frac{83137539971595372995}{441160480030952} a^{11} - \frac{624890478886087}{8051892024} a^{10} - \frac{55797364244592811265}{120316494553896} a^{9} - \frac{46605866807605}{243996728} a^{8} - \frac{19407737733038135165}{40105498184632} a^{7} - \frac{145939083525805}{731990184} a^{6} - \frac{154923086482495147543}{661740720046428} a^{5} - \frac{388471206696475}{4025946012} a^{4} - \frac{913538441963261285}{17414229474906} a^{3} - \frac{43542337909085}{2012973006} a^{2} - \frac{306878050117048105}{69656917899624} a - \frac{14630705194129}{8051892024} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 307931905.969 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.322143585205078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.10.8.1 | $x^{10} - 209 x^{5} + 11552$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |