Normalized defining polynomial
\( x^{20} - 6 x^{19} + 20 x^{18} - 48 x^{17} + 89 x^{16} - 134 x^{15} + 175 x^{14} - 207 x^{13} + 237 x^{12} - 278 x^{11} + 331 x^{10} - 386 x^{9} + 426 x^{8} - 419 x^{7} + 372 x^{6} - 281 x^{5} + 181 x^{4} - 95 x^{3} + 37 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51885951292865088442368=2^{12}\cdot 3^{10}\cdot 13^{7}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{364701773} a^{19} - \frac{31550495}{364701773} a^{18} + \frac{114636090}{364701773} a^{17} + \frac{103068818}{364701773} a^{16} + \frac{138543366}{364701773} a^{15} - \frac{91522761}{364701773} a^{14} - \frac{58146833}{364701773} a^{13} - \frac{137279635}{364701773} a^{12} + \frac{146543403}{364701773} a^{11} - \frac{179622520}{364701773} a^{10} + \frac{173989735}{364701773} a^{9} - \frac{38580187}{364701773} a^{8} - \frac{130879882}{364701773} a^{7} + \frac{123026115}{364701773} a^{6} + \frac{11282965}{364701773} a^{5} + \frac{149294496}{364701773} a^{4} + \frac{148215689}{364701773} a^{3} + \frac{149531492}{364701773} a^{2} - \frac{75725453}{364701773} a - \frac{101693866}{364701773}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2946815}{1345763} a^{19} + \frac{16634223}{1345763} a^{18} - \frac{52981942}{1345763} a^{17} + \frac{122284060}{1345763} a^{16} - \frac{217763082}{1345763} a^{15} + \frac{315377926}{1345763} a^{14} - \frac{400515028}{1345763} a^{13} + \frac{464486916}{1345763} a^{12} - \frac{530917332}{1345763} a^{11} + \frac{628361642}{1345763} a^{10} - \frac{749568837}{1345763} a^{9} + \frac{866975904}{1345763} a^{8} - \frac{941144487}{1345763} a^{7} + \frac{894743947}{1345763} a^{6} - \frac{774716693}{1345763} a^{5} + \frac{551398157}{1345763} a^{4} - \frac{339643150}{1345763} a^{3} + \frac{161467997}{1345763} a^{2} - \frac{54734262}{1345763} a + \frac{9459824}{1345763} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3440.36919796 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.117.1, 10.0.4859704512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 43.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |