Normalized defining polynomial
\( x^{20} + 183 x^{18} + 12627 x^{16} + 421632 x^{14} + 7258329 x^{12} + 64153944 x^{10} + 284912883 x^{8} + 601532163 x^{6} + 511482438 x^{4} + 81645084 x^{2} + 3601989 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(516510703469799849283535395746427778167209984=2^{20}\cdot 3^{10}\cdot 61^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $172.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(732=2^{2}\cdot 3\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{732}(1,·)$, $\chi_{732}(11,·)$, $\chi_{732}(325,·)$, $\chi_{732}(455,·)$, $\chi_{732}(587,·)$, $\chi_{732}(529,·)$, $\chi_{732}(599,·)$, $\chi_{732}(601,·)$, $\chi_{732}(155,·)$, $\chi_{732}(419,·)$, $\chi_{732}(613,·)$, $\chi_{732}(647,·)$, $\chi_{732}(253,·)$, $\chi_{732}(241,·)$, $\chi_{732}(695,·)$, $\chi_{732}(23,·)$, $\chi_{732}(121,·)$, $\chi_{732}(217,·)$, $\chi_{732}(637,·)$, $\chi_{732}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{3159} a^{10} - \frac{1}{1053} a^{8} + \frac{1}{351} a^{6} - \frac{1}{117} a^{4} + \frac{1}{39} a^{2} - \frac{1}{13}$, $\frac{1}{3159} a^{11} - \frac{1}{1053} a^{9} + \frac{1}{351} a^{7} - \frac{1}{117} a^{5} + \frac{1}{39} a^{3} - \frac{1}{13} a$, $\frac{1}{9477} a^{12} - \frac{1}{13}$, $\frac{1}{9477} a^{13} - \frac{1}{13} a$, $\frac{1}{369603} a^{14} - \frac{1}{123201} a^{12} + \frac{5}{41067} a^{10} - \frac{70}{13689} a^{8} + \frac{19}{1521} a^{6} - \frac{2}{169} a^{4} + \frac{43}{507} a^{2} - \frac{30}{169}$, $\frac{1}{369603} a^{15} - \frac{1}{123201} a^{13} + \frac{5}{41067} a^{11} - \frac{70}{13689} a^{9} + \frac{19}{1521} a^{7} - \frac{2}{169} a^{5} + \frac{43}{507} a^{3} - \frac{30}{169} a$, $\frac{1}{52114023} a^{16} - \frac{17}{17371341} a^{14} + \frac{190}{5790447} a^{12} - \frac{11}{643383} a^{10} + \frac{3257}{643383} a^{8} + \frac{877}{214461} a^{6} + \frac{1397}{71487} a^{4} - \frac{313}{7943} a^{2} + \frac{1377}{7943}$, $\frac{1}{52114023} a^{17} - \frac{17}{17371341} a^{15} + \frac{190}{5790447} a^{13} - \frac{11}{643383} a^{11} + \frac{3257}{643383} a^{9} + \frac{877}{214461} a^{7} + \frac{1397}{71487} a^{5} - \frac{313}{7943} a^{3} + \frac{1377}{7943} a$, $\frac{1}{85450475854946241} a^{18} + \frac{94544462}{28483491951648747} a^{16} + \frac{4736255416}{9494497317216249} a^{14} + \frac{131691240659}{3164832439072083} a^{12} - \frac{23798126569}{351648048785787} a^{10} + \frac{96905103688}{39072005420643} a^{8} - \frac{1858616811560}{117216016261929} a^{6} + \frac{1849417613825}{39072005420643} a^{4} - \frac{1451954339066}{13024001806881} a^{2} - \frac{1026470992862}{4341333935627}$, $\frac{1}{85450475854946241} a^{19} + \frac{94544462}{28483491951648747} a^{17} + \frac{4736255416}{9494497317216249} a^{15} + \frac{131691240659}{3164832439072083} a^{13} - \frac{23798126569}{351648048785787} a^{11} + \frac{96905103688}{39072005420643} a^{9} - \frac{1858616811560}{117216016261929} a^{7} + \frac{1849417613825}{39072005420643} a^{5} - \frac{1451954339066}{13024001806881} a^{3} - \frac{1026470992862}{4341333935627} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2530100}$, which has order $10120400$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36549838.47150319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.32685264.1, 5.5.13845841.1, 10.10.11694146092834141.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{20}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||