Normalized defining polynomial
\( x^{20} - 5 x^{19} + 20 x^{18} - 60 x^{17} + 140 x^{16} - 281 x^{15} + 460 x^{14} - 645 x^{13} + 770 x^{12} - 780 x^{11} + 711 x^{10} - 560 x^{9} + 420 x^{8} - 155 x^{7} + 60 x^{6} - x^{5} - 20 x^{4} - 20 x^{3} - 30 x^{2} - 25 x + 41 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(513156902790069580078125=3^{16}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{82} a^{16} - \frac{8}{41} a^{15} + \frac{9}{41} a^{14} - \frac{1}{82} a^{13} - \frac{5}{82} a^{12} - \frac{4}{41} a^{11} + \frac{9}{82} a^{10} - \frac{27}{82} a^{9} - \frac{12}{41} a^{8} + \frac{5}{82} a^{7} - \frac{23}{82} a^{6} - \frac{9}{41} a^{5} - \frac{13}{82} a^{4} - \frac{23}{82} a^{3} + \frac{11}{41} a^{2} - \frac{10}{41} a - \frac{1}{2}$, $\frac{1}{82} a^{17} + \frac{4}{41} a^{15} + \frac{10}{41} a^{13} - \frac{3}{41} a^{12} + \frac{2}{41} a^{11} - \frac{3}{41} a^{10} + \frac{18}{41} a^{9} - \frac{5}{41} a^{8} + \frac{8}{41} a^{7} + \frac{12}{41} a^{6} - \frac{7}{41} a^{5} - \frac{13}{41} a^{4} - \frac{9}{41} a^{3} - \frac{37}{82} a^{2} + \frac{4}{41} a$, $\frac{1}{82} a^{18} + \frac{5}{82} a^{15} - \frac{1}{82} a^{14} + \frac{1}{41} a^{13} + \frac{3}{82} a^{12} + \frac{17}{82} a^{11} - \frac{18}{41} a^{10} + \frac{1}{82} a^{9} + \frac{3}{82} a^{8} - \frac{8}{41} a^{7} - \frac{35}{82} a^{6} - \frac{5}{82} a^{5} + \frac{2}{41} a^{4} + \frac{12}{41} a^{3} + \frac{37}{82} a^{2} - \frac{2}{41} a$, $\frac{1}{4209058958905942} a^{19} + \frac{5181789051123}{2104529479452971} a^{18} - \frac{4881190440462}{2104529479452971} a^{17} + \frac{6992884106214}{2104529479452971} a^{16} + \frac{5291132060602}{2104529479452971} a^{15} + \frac{831524133544345}{4209058958905942} a^{14} - \frac{441932048162739}{2104529479452971} a^{13} + \frac{228801678421616}{2104529479452971} a^{12} + \frac{527085657019101}{4209058958905942} a^{11} + \frac{92185739687670}{2104529479452971} a^{10} + \frac{471129549582272}{2104529479452971} a^{9} - \frac{754333434720563}{4209058958905942} a^{8} + \frac{1023603737705178}{2104529479452971} a^{7} + \frac{875510078945917}{2104529479452971} a^{6} - \frac{560049381089701}{4209058958905942} a^{5} - \frac{1958461313285227}{4209058958905942} a^{4} - \frac{3909995314868}{51329987303731} a^{3} - \frac{1329789727243205}{4209058958905942} a^{2} + \frac{519021938986836}{2104529479452971} a + \frac{13513494645516}{51329987303731}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{84391488155618}{2104529479452971} a^{19} + \frac{356636710342078}{2104529479452971} a^{18} - \frac{2755075330566425}{4209058958905942} a^{17} + \frac{7590728758339177}{4209058958905942} a^{16} - \frac{8055597930620912}{2104529479452971} a^{15} + \frac{14917545240599615}{2104529479452971} a^{14} - \frac{21103533052420195}{2104529479452971} a^{13} + \frac{25714059074873476}{2104529479452971} a^{12} - \frac{24659887357467279}{2104529479452971} a^{11} + \frac{19041177257029201}{2104529479452971} a^{10} - \frac{14224130368815338}{2104529479452971} a^{9} + \frac{8338472659137343}{2104529479452971} a^{8} - \frac{8355259610613490}{2104529479452971} a^{7} - \frac{6824839866858914}{2104529479452971} a^{6} - \frac{624544470362671}{2104529479452971} a^{5} - \frac{5712297983939406}{2104529479452971} a^{4} - \frac{1475395151637769}{2104529479452971} a^{3} - \frac{1483153337487647}{4209058958905942} a^{2} + \frac{6780722042203047}{4209058958905942} a + \frac{67741716644540}{51329987303731} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21670.1464682 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.253125.1 x5, 10.2.320361328125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.253125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||