Normalized defining polynomial
\( x^{20} - 2 x^{19} - 3 x^{18} + 16 x^{17} - 42 x^{16} + 26 x^{15} + 192 x^{14} - 565 x^{13} + 579 x^{12} + 362 x^{11} - 2581 x^{10} + 5811 x^{9} - 6521 x^{8} - 2629 x^{7} + 24457 x^{6} - 49129 x^{5} + 63769 x^{4} - 63953 x^{3} + 50935 x^{2} - 27921 x + 8159 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(511097690085059595400390625=5^{10}\cdot 13^{4}\cdot 41^{7}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{7}{23} a^{17} - \frac{4}{23} a^{16} - \frac{11}{23} a^{15} - \frac{4}{23} a^{14} + \frac{5}{23} a^{13} - \frac{11}{23} a^{12} + \frac{9}{23} a^{10} - \frac{5}{23} a^{9} - \frac{5}{23} a^{8} - \frac{10}{23} a^{7} + \frac{11}{23} a^{6} - \frac{1}{23} a^{5} + \frac{8}{23} a^{4} - \frac{5}{23} a^{3} + \frac{3}{23} a^{2} - \frac{9}{23} a - \frac{4}{23}$, $\frac{1}{707700481150664827788171927077372988763} a^{19} + \frac{13851629638291239770553394228733234978}{707700481150664827788171927077372988763} a^{18} + \frac{347948190863596856148992434849506140972}{707700481150664827788171927077372988763} a^{17} - \frac{165907608903731598353020957413188590314}{707700481150664827788171927077372988763} a^{16} - \frac{105567982532282307902031106552649809595}{707700481150664827788171927077372988763} a^{15} + \frac{257607899587865292749400309541976813885}{707700481150664827788171927077372988763} a^{14} - \frac{325375706643121084028640998190131550387}{707700481150664827788171927077372988763} a^{13} - \frac{124598304871525328654840055513245015096}{707700481150664827788171927077372988763} a^{12} + \frac{123344057039196995915887610668071362755}{707700481150664827788171927077372988763} a^{11} + \frac{14860128072975918893527674992658090695}{30769586136985427295137909872929260381} a^{10} - \frac{77598507003321310842337186327793841224}{707700481150664827788171927077372988763} a^{9} + \frac{6475158513517945540951598762063370600}{30769586136985427295137909872929260381} a^{8} + \frac{309261378655154666054537402323242098398}{707700481150664827788171927077372988763} a^{7} - \frac{6394959692715629241690081114621943646}{30769586136985427295137909872929260381} a^{6} + \frac{136913396162519872729702831120662424152}{707700481150664827788171927077372988763} a^{5} - \frac{202404261246614799533894286587552992368}{707700481150664827788171927077372988763} a^{4} - \frac{160402875380295532448219792156029379825}{707700481150664827788171927077372988763} a^{3} + \frac{221465240941086648318748828899545746096}{707700481150664827788171927077372988763} a^{2} - \frac{89351867893142862837691134024509513803}{707700481150664827788171927077372988763} a - \frac{313244427853583699041609919993047472559}{707700481150664827788171927077372988763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95787.007316 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.2665.1, 10.2.887778125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 41 | Data not computed | ||||||
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |