Properties

Label 20.0.51083073681...2912.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 17^{5}\cdot 1361^{4}$
Root discriminant $17.20$
Ramified primes $2, 17, 1361$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T299

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, -2, -16, 10, 105, -416, 1054, -1990, 2900, -3370, 3257, -2768, 2153, -1526, 965, -536, 257, -104, 34, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 34*x^18 - 104*x^17 + 257*x^16 - 536*x^15 + 965*x^14 - 1526*x^13 + 2153*x^12 - 2768*x^11 + 3257*x^10 - 3370*x^9 + 2900*x^8 - 1990*x^7 + 1054*x^6 - 416*x^5 + 105*x^4 + 10*x^3 - 16*x^2 - 2*x + 5)
 
gp: K = bnfinit(x^20 - 8*x^19 + 34*x^18 - 104*x^17 + 257*x^16 - 536*x^15 + 965*x^14 - 1526*x^13 + 2153*x^12 - 2768*x^11 + 3257*x^10 - 3370*x^9 + 2900*x^8 - 1990*x^7 + 1054*x^6 - 416*x^5 + 105*x^4 + 10*x^3 - 16*x^2 - 2*x + 5, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 34 x^{18} - 104 x^{17} + 257 x^{16} - 536 x^{15} + 965 x^{14} - 1526 x^{13} + 2153 x^{12} - 2768 x^{11} + 3257 x^{10} - 3370 x^{9} + 2900 x^{8} - 1990 x^{7} + 1054 x^{6} - 416 x^{5} + 105 x^{4} + 10 x^{3} - 16 x^{2} - 2 x + 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5108307368122015428902912=2^{20}\cdot 17^{5}\cdot 1361^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 1361$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{15537615967248371735} a^{19} + \frac{4519404038939923826}{15537615967248371735} a^{18} + \frac{3352009136257785318}{15537615967248371735} a^{17} + \frac{4562656484529421113}{15537615967248371735} a^{16} - \frac{6628883110322315756}{15537615967248371735} a^{15} + \frac{1272955152855942712}{3107523193449674347} a^{14} - \frac{637199709698347010}{3107523193449674347} a^{13} - \frac{4531752193734641116}{15537615967248371735} a^{12} + \frac{2324324647545721644}{15537615967248371735} a^{11} + \frac{289505813781374883}{15537615967248371735} a^{10} + \frac{7081252394474966589}{15537615967248371735} a^{9} + \frac{7628710552620882941}{15537615967248371735} a^{8} - \frac{3863185755882911236}{15537615967248371735} a^{7} + \frac{756095366280760076}{15537615967248371735} a^{6} + \frac{5798994809382748938}{15537615967248371735} a^{5} - \frac{4640340283696340539}{15537615967248371735} a^{4} + \frac{2584224500595520204}{15537615967248371735} a^{3} - \frac{3932681059721716499}{15537615967248371735} a^{2} + \frac{6048957307559997423}{15537615967248371735} a - \frac{970508380334119306}{3107523193449674347}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{415103875614}{3628042008443} a^{19} - \frac{3040527862050}{3628042008443} a^{18} + \frac{11871859524739}{3628042008443} a^{17} - \frac{33795103520641}{3628042008443} a^{16} + \frac{78487952153436}{3628042008443} a^{15} - \frac{153899822426610}{3628042008443} a^{14} + \frac{259733262647126}{3628042008443} a^{13} - \frac{384172555967670}{3628042008443} a^{12} + \frac{506445918904026}{3628042008443} a^{11} - \frac{612522124634308}{3628042008443} a^{10} + \frac{673815895365242}{3628042008443} a^{9} - \frac{613595620190629}{3628042008443} a^{8} + \frac{413576477661083}{3628042008443} a^{7} - \frac{179966694096807}{3628042008443} a^{6} + \frac{26889928453673}{3628042008443} a^{5} + \frac{20553219532185}{3628042008443} a^{4} - \frac{24238044255074}{3628042008443} a^{3} + \frac{20490599645080}{3628042008443} a^{2} - \frac{2969358337265}{3628042008443} a - \frac{2664086449026}{3628042008443} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 45855.5542226 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T299:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5000
The 230 conjugacy class representatives for t20n299 are not computed
Character table for t20n299 is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 4.0.272.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ $20$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$17$17.5.0.1$x^{5} - x + 6$$1$$5$$0$$C_5$$[\ ]^{5}$
17.5.0.1$x^{5} - x + 6$$1$$5$$0$$C_5$$[\ ]^{5}$
17.10.5.1$x^{10} - 578 x^{6} + 83521 x^{2} - 51114852$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
1361Data not computed