Normalized defining polynomial
\( x^{20} - x^{19} + 5 x^{18} - 60 x^{17} + 124 x^{16} - 29 x^{15} + 306 x^{14} - 1060 x^{13} - 1828 x^{12} + 5534 x^{11} + 4106 x^{10} - 11239 x^{9} - 7296 x^{8} + 11779 x^{7} + 53197 x^{6} - 108261 x^{5} + 84143 x^{4} - 20458 x^{3} + 1348 x^{2} - 321 x + 87 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5095534855386564657677272489420689=3^{19}\cdot 547^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{11} - \frac{2}{9} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3}$, $\frac{1}{297} a^{18} + \frac{1}{297} a^{16} + \frac{7}{297} a^{15} - \frac{5}{297} a^{14} + \frac{4}{297} a^{13} - \frac{1}{9} a^{12} - \frac{20}{297} a^{11} - \frac{1}{9} a^{10} + \frac{4}{297} a^{9} - \frac{5}{99} a^{8} - \frac{83}{297} a^{7} - \frac{125}{297} a^{6} - \frac{125}{297} a^{5} - \frac{119}{297} a^{4} - \frac{5}{11} a^{3} + \frac{37}{297} a^{2} + \frac{13}{33} a - \frac{34}{99}$, $\frac{1}{12774816714805520556689007087960955652553} a^{19} - \frac{2003890033641369391018778714782636114}{12774816714805520556689007087960955652553} a^{18} - \frac{157891907822495297800225376761447753973}{12774816714805520556689007087960955652553} a^{17} - \frac{16723788671758635254581485207933040508}{473141359807611872469963225480035394539} a^{16} - \frac{82688322671723326257817823322090379051}{4258272238268506852229669029320318550851} a^{15} - \frac{32716560790109686460923137974774225354}{4258272238268506852229669029320318550851} a^{14} - \frac{662427018717628561676598861439912288963}{12774816714805520556689007087960955652553} a^{13} - \frac{1334322113333995393719865967706949501142}{12774816714805520556689007087960955652553} a^{12} + \frac{1412149679303859118284543151601626901960}{12774816714805520556689007087960955652553} a^{11} + \frac{809478159495188996206110232401868932184}{12774816714805520556689007087960955652553} a^{10} + \frac{109804394093926303700966757028267556227}{1161346974073229141517182462541905059323} a^{9} + \frac{5747925101136800851273622847342242344678}{12774816714805520556689007087960955652553} a^{8} - \frac{785953981888761653782468257781263051181}{4258272238268506852229669029320318550851} a^{7} + \frac{100869939000220764093378140102134022909}{1419424079422835617409889676440106183617} a^{6} - \frac{514851061429075343413121703490564427495}{1419424079422835617409889676440106183617} a^{5} + \frac{1489950157104741969183468544118617075481}{12774816714805520556689007087960955652553} a^{4} + \frac{4517520798169071917098014493717234864489}{12774816714805520556689007087960955652553} a^{3} - \frac{328637682333220147998680560157892196379}{1161346974073229141517182462541905059323} a^{2} - \frac{735271568807767266428061886847483055910}{4258272238268506852229669029320318550851} a + \frac{257014010601088068734553527481200505889}{4258272238268506852229669029320318550851}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3446960700.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 120 |
| The 13 conjugacy class representatives for $C_5:S_4$ |
| Character table for $C_5:S_4$ |
Intermediate fields
| 4.0.14769.1, 5.5.2692881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 547 | Data not computed | ||||||