Properties

Label 20.0.50470297395...3125.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{12}\cdot 5^{12}\cdot 71\cdot 691^{4}\cdot 2403091$
Root discriminant $48.43$
Ramified primes $3, 5, 71, 691, 2403091$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1037

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![496, -1992, 5391, -10632, 18704, -29867, 44248, -58408, 67711, -67908, 58874, -44048, 28462, -15842, 7568, -3072, 1047, -291, 64, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 64*x^18 - 291*x^17 + 1047*x^16 - 3072*x^15 + 7568*x^14 - 15842*x^13 + 28462*x^12 - 44048*x^11 + 58874*x^10 - 67908*x^9 + 67711*x^8 - 58408*x^7 + 44248*x^6 - 29867*x^5 + 18704*x^4 - 10632*x^3 + 5391*x^2 - 1992*x + 496)
 
gp: K = bnfinit(x^20 - 10*x^19 + 64*x^18 - 291*x^17 + 1047*x^16 - 3072*x^15 + 7568*x^14 - 15842*x^13 + 28462*x^12 - 44048*x^11 + 58874*x^10 - 67908*x^9 + 67711*x^8 - 58408*x^7 + 44248*x^6 - 29867*x^5 + 18704*x^4 - 10632*x^3 + 5391*x^2 - 1992*x + 496, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 64 x^{18} - 291 x^{17} + 1047 x^{16} - 3072 x^{15} + 7568 x^{14} - 15842 x^{13} + 28462 x^{12} - 44048 x^{11} + 58874 x^{10} - 67908 x^{9} + 67711 x^{8} - 58408 x^{7} + 44248 x^{6} - 29867 x^{5} + 18704 x^{4} - 10632 x^{3} + 5391 x^{2} - 1992 x + 496 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5047029739577858513663735595703125=3^{12}\cdot 5^{12}\cdot 71\cdot 691^{4}\cdot 2403091\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 71, 691, 2403091$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{18752} a^{18} - \frac{9}{18752} a^{17} - \frac{3637}{18752} a^{16} - \frac{7}{16} a^{15} - \frac{5785}{18752} a^{14} - \frac{4169}{18752} a^{13} + \frac{3091}{18752} a^{12} + \frac{2557}{18752} a^{11} + \frac{1511}{18752} a^{10} + \frac{5531}{18752} a^{9} - \frac{1119}{18752} a^{8} + \frac{6457}{18752} a^{7} + \frac{1267}{4688} a^{6} - \frac{317}{2344} a^{5} + \frac{239}{586} a^{4} + \frac{2197}{18752} a^{3} + \frac{6245}{18752} a^{2} + \frac{3905}{18752} a - \frac{259}{4688}$, $\frac{1}{18752} a^{19} - \frac{1859}{9376} a^{17} - \frac{3433}{18752} a^{16} - \frac{4613}{18752} a^{15} + \frac{11}{9376} a^{14} + \frac{1537}{9376} a^{13} - \frac{891}{2344} a^{12} + \frac{1443}{4688} a^{11} + \frac{189}{9376} a^{10} - \frac{1899}{4688} a^{9} - \frac{1807}{9376} a^{8} + \frac{6925}{18752} a^{7} + \frac{1393}{4688} a^{6} + \frac{447}{2344} a^{5} - \frac{3979}{18752} a^{4} + \frac{3633}{9376} a^{3} + \frac{1927}{9376} a^{2} - \frac{3395}{18752} a - \frac{2331}{4688}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 638544620.179 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1037:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 384 conjugacy class representatives for t20n1037 are not computed
Character table for t20n1037 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.5438807015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
3.8.0.1$x^{8} - x^{3} + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
71Data not computed
691Data not computed
2403091Data not computed