Normalized defining polynomial
\( x^{20} - 10 x^{18} + 80 x^{16} - 24 x^{15} - 280 x^{14} + 105 x^{13} + 870 x^{12} + 30 x^{11} - 2024 x^{10} - 165 x^{9} + 4525 x^{8} + 1095 x^{7} - 5325 x^{6} - 399 x^{5} + 5925 x^{4} + 2760 x^{3} + 115 x^{2} + 1395 x + 1646 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5015221039059174060821533203125=5^{23}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{66} a^{16} + \frac{1}{22} a^{15} + \frac{5}{33} a^{14} + \frac{2}{11} a^{13} - \frac{7}{66} a^{12} + \frac{5}{11} a^{11} + \frac{2}{33} a^{10} - \frac{4}{11} a^{9} - \frac{29}{66} a^{8} - \frac{7}{22} a^{7} - \frac{17}{66} a^{6} + \frac{5}{22} a^{5} - \frac{7}{33} a^{4} + \frac{1}{22} a^{3} - \frac{4}{11} a^{2} + \frac{14}{33}$, $\frac{1}{66} a^{17} + \frac{1}{66} a^{15} + \frac{5}{22} a^{14} - \frac{5}{33} a^{13} - \frac{5}{22} a^{12} - \frac{10}{33} a^{11} - \frac{1}{22} a^{10} - \frac{23}{66} a^{9} - \frac{10}{33} a^{7} - \frac{1}{2} a^{6} - \frac{13}{33} a^{5} + \frac{2}{11} a^{4} + \frac{1}{11} a^{2} - \frac{5}{66} a - \frac{3}{11}$, $\frac{1}{132} a^{18} - \frac{1}{132} a^{17} + \frac{1}{12} a^{15} + \frac{31}{132} a^{14} + \frac{4}{33} a^{13} - \frac{31}{132} a^{12} - \frac{23}{66} a^{11} + \frac{3}{44} a^{10} + \frac{47}{132} a^{9} - \frac{2}{11} a^{8} - \frac{29}{66} a^{7} - \frac{3}{44} a^{6} - \frac{5}{66} a^{5} + \frac{1}{66} a^{4} + \frac{1}{44} a^{3} + \frac{23}{66} a^{2} - \frac{13}{132} a - \frac{5}{66}$, $\frac{1}{50481971153046581895368176236} a^{19} + \frac{11247159225597175746778503}{16827323717682193965122725412} a^{18} + \frac{75419821851575095692581186}{12620492788261645473842044059} a^{17} + \frac{189076919595976699778113885}{50481971153046581895368176236} a^{16} + \frac{1461871916823731048610775607}{16827323717682193965122725412} a^{15} - \frac{387729790579913730009948743}{12620492788261645473842044059} a^{14} - \frac{3375403031490816293703677527}{16827323717682193965122725412} a^{13} - \frac{4980752899306241554496839805}{25240985576523290947684088118} a^{12} + \frac{5432696531808322154686150595}{50481971153046581895368176236} a^{11} - \frac{586572463435727544923242109}{1628450682356341351463489556} a^{10} - \frac{3865314091208631803921188069}{12620492788261645473842044059} a^{9} - \frac{8476959927193518720947456593}{25240985576523290947684088118} a^{8} + \frac{1698489433920066252600514025}{50481971153046581895368176236} a^{7} + \frac{8272381163584509488903873183}{25240985576523290947684088118} a^{6} - \frac{10969914804492480299432127007}{25240985576523290947684088118} a^{5} + \frac{2149819663591966550067391543}{50481971153046581895368176236} a^{4} - \frac{4205927643666404118920556619}{25240985576523290947684088118} a^{3} + \frac{6164277860280808191090732483}{16827323717682193965122725412} a^{2} + \frac{3082741085437462312958907161}{25240985576523290947684088118} a + \frac{5877887623896844288529537998}{12620492788261645473842044059}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24284084.6035 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), 4.0.105125.1, 5.1.2628125.1, 10.2.1001520947265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |