Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} - 26 x^{17} + 128 x^{16} - 285 x^{15} + 24 x^{14} + 1604 x^{13} - 5273 x^{12} + 14359 x^{11} - 44804 x^{10} + 119159 x^{9} - 182765 x^{8} - 83940 x^{7} + 1254961 x^{6} - 3416862 x^{5} + 5372078 x^{4} - 5435872 x^{3} + 3552917 x^{2} - 1412213 x + 271445 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{2} a^{15} + \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1144} a^{18} - \frac{155}{1144} a^{16} + \frac{249}{572} a^{15} - \frac{71}{1144} a^{14} - \frac{519}{1144} a^{13} + \frac{369}{1144} a^{12} - \frac{411}{1144} a^{11} + \frac{54}{143} a^{10} - \frac{54}{143} a^{9} - \frac{5}{22} a^{8} - \frac{225}{1144} a^{7} + \frac{571}{1144} a^{6} - \frac{365}{1144} a^{5} + \frac{103}{286} a^{4} - \frac{367}{1144} a^{3} - \frac{5}{44} a^{2} + \frac{229}{1144} a + \frac{23}{1144}$, $\frac{1}{2271900821366257041159780918483471029863682207823568} a^{19} - \frac{524514522362047815215866405268064062593447656009}{2271900821366257041159780918483471029863682207823568} a^{18} - \frac{12631058549296603260123518445828809976844086573983}{2271900821366257041159780918483471029863682207823568} a^{17} - \frac{111673990333466846674097862724357292761606215045455}{2271900821366257041159780918483471029863682207823568} a^{16} + \frac{10264047732290179961956581052434515826282785290211}{174761601643558233935367762960267002297206323678736} a^{15} + \frac{44246567352427778806893073569852685774171610413629}{283987602670782130144972614810433878732960275977946} a^{14} + \frac{9905712534412149265498602198319561659436984035699}{43690400410889558483841940740066750574301580919684} a^{13} - \frac{99949668056874104694963886205714726515933840395359}{567975205341564260289945229620867757465920551955892} a^{12} - \frac{673464558379632170553858184022464527263765413812097}{2271900821366257041159780918483471029863682207823568} a^{11} + \frac{141134073836340230200133879394759000460983319555511}{283987602670782130144972614810433878732960275977946} a^{10} - \frac{170458392233578244858834002169388627971883453157943}{567975205341564260289945229620867757465920551955892} a^{9} + \frac{414578684947707869314722389731203967882522146435715}{2271900821366257041159780918483471029863682207823568} a^{8} - \frac{1463914659534522629725635959412969201912378906569}{51634109576505841844540475420078887042356413814172} a^{7} + \frac{143913931578679433154961003219130263539237207991939}{567975205341564260289945229620867757465920551955892} a^{6} - \frac{639776798266542708745009535876295240414969410272023}{2271900821366257041159780918483471029863682207823568} a^{5} + \frac{422611747781937887126386655260566828594146942091305}{2271900821366257041159780918483471029863682207823568} a^{4} + \frac{1082654366154172863209419597721225531780452258879505}{2271900821366257041159780918483471029863682207823568} a^{3} - \frac{593655537988341803832319660841562242176390073555049}{2271900821366257041159780918483471029863682207823568} a^{2} + \frac{79266091042678641886516904273311905033133314033837}{1135950410683128520579890459241735514931841103911784} a + \frac{4606206400631460000068886640080120108012027738333}{9750647302001103180943265744564253347054430076496}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 455859710.263 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||