Normalized defining polynomial
\( x^{20} - 45 x^{18} - 20 x^{17} + 1035 x^{16} + 636 x^{15} - 7840 x^{14} + 2360 x^{13} + 91710 x^{12} + 74300 x^{11} + 203160 x^{10} - 37920 x^{9} + 5611600 x^{8} + 1269200 x^{7} + 35937265 x^{6} - 1871502 x^{5} + 209760805 x^{4} + 13888310 x^{3} + 772864335 x^{2} + 119407110 x + 1584355549 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4968509573481201782226562500000000000000000000=2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3900=2^{2}\cdot 3\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3900}(1,·)$, $\chi_{3900}(389,·)$, $\chi_{3900}(571,·)$, $\chi_{3900}(1351,·)$, $\chi_{3900}(3719,·)$, $\chi_{3900}(781,·)$, $\chi_{3900}(1169,·)$, $\chi_{3900}(2131,·)$, $\chi_{3900}(599,·)$, $\chi_{3900}(1561,·)$, $\chi_{3900}(1949,·)$, $\chi_{3900}(2911,·)$, $\chi_{3900}(1379,·)$, $\chi_{3900}(2341,·)$, $\chi_{3900}(2729,·)$, $\chi_{3900}(3691,·)$, $\chi_{3900}(2159,·)$, $\chi_{3900}(3121,·)$, $\chi_{3900}(3509,·)$, $\chi_{3900}(2939,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{175} a^{10} - \frac{2}{35} a^{8} - \frac{2}{35} a^{7} - \frac{2}{5} a^{6} - \frac{1}{25} a^{5} + \frac{11}{35} a^{4} + \frac{1}{5} a^{3} + \frac{2}{35} a^{2} + \frac{2}{35} a - \frac{1}{25}$, $\frac{1}{175} a^{11} - \frac{2}{35} a^{9} - \frac{2}{35} a^{8} + \frac{1}{35} a^{7} - \frac{1}{25} a^{6} + \frac{11}{35} a^{5} + \frac{1}{5} a^{4} + \frac{2}{35} a^{3} + \frac{2}{35} a^{2} - \frac{82}{175} a$, $\frac{1}{1225} a^{12} + \frac{1}{1225} a^{11} + \frac{1}{1225} a^{10} - \frac{4}{245} a^{9} + \frac{17}{245} a^{8} - \frac{62}{1225} a^{7} - \frac{372}{1225} a^{6} + \frac{538}{1225} a^{5} - \frac{2}{49} a^{4} - \frac{94}{245} a^{3} + \frac{13}{1225} a^{2} + \frac{503}{1225} a + \frac{39}{175}$, $\frac{1}{1225} a^{13} - \frac{2}{35} a^{9} - \frac{1}{175} a^{8} + \frac{1}{245} a^{7} - \frac{16}{35} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{24}{175} a^{3} + \frac{2}{7} a^{2} - \frac{109}{245} a - \frac{12}{35}$, $\frac{1}{8575} a^{14} - \frac{1}{8575} a^{13} - \frac{2}{8575} a^{12} + \frac{12}{8575} a^{11} - \frac{16}{8575} a^{10} - \frac{387}{8575} a^{9} + \frac{542}{8575} a^{8} - \frac{83}{1225} a^{7} - \frac{3449}{8575} a^{6} + \frac{3222}{8575} a^{5} - \frac{572}{8575} a^{4} - \frac{3778}{8575} a^{3} + \frac{3279}{8575} a^{2} - \frac{594}{8575} a + \frac{276}{1225}$, $\frac{1}{8575} a^{15} - \frac{3}{8575} a^{13} + \frac{3}{8575} a^{12} - \frac{11}{8575} a^{11} - \frac{18}{8575} a^{10} + \frac{59}{1715} a^{9} + \frac{346}{8575} a^{8} - \frac{166}{8575} a^{7} + \frac{662}{8575} a^{6} - \frac{772}{1715} a^{5} + \frac{82}{1715} a^{4} - \frac{639}{8575} a^{3} + \frac{1614}{8575} a^{2} + \frac{2962}{8575} a - \frac{389}{1225}$, $\frac{1}{8575} a^{16} - \frac{3}{8575} a^{12} - \frac{17}{8575} a^{11} + \frac{16}{8575} a^{10} - \frac{121}{1715} a^{9} - \frac{107}{1715} a^{8} + \frac{256}{8575} a^{7} - \frac{1922}{8575} a^{6} - \frac{522}{8575} a^{5} - \frac{219}{1715} a^{4} + \frac{72}{1715} a^{3} - \frac{984}{8575} a^{2} + \frac{821}{1715} a + \frac{394}{1225}$, $\frac{1}{8575} a^{17} - \frac{3}{8575} a^{13} - \frac{3}{8575} a^{12} - \frac{19}{8575} a^{11} - \frac{3}{8575} a^{10} - \frac{13}{343} a^{9} - \frac{269}{8575} a^{8} - \frac{68}{1715} a^{7} - \frac{3672}{8575} a^{6} - \frac{374}{8575} a^{5} - \frac{803}{1715} a^{4} + \frac{3951}{8575} a^{3} - \frac{2573}{8575} a^{2} + \frac{52}{175} a - \frac{6}{175}$, $\frac{1}{20402308787822675} a^{18} - \frac{347916039343}{20402308787822675} a^{17} + \frac{823483440516}{20402308787822675} a^{16} - \frac{102215307981}{2914615541117525} a^{15} + \frac{148661584597}{20402308787822675} a^{14} + \frac{6727995921543}{20402308787822675} a^{13} + \frac{477964817927}{4080461757564535} a^{12} - \frac{33800038161672}{20402308787822675} a^{11} + \frac{39683221728739}{20402308787822675} a^{10} - \frac{186469479958939}{20402308787822675} a^{9} + \frac{457804812328923}{20402308787822675} a^{8} + \frac{855188327173743}{20402308787822675} a^{7} + \frac{7084172097360298}{20402308787822675} a^{6} + \frac{46064818040044}{202003057305175} a^{5} - \frac{4498052800503839}{20402308787822675} a^{4} + \frac{776661118538101}{4080461757564535} a^{3} - \frac{2794617918073468}{20402308787822675} a^{2} + \frac{1997373147195967}{4080461757564535} a + \frac{46282465170911}{116584621644701}$, $\frac{1}{66123682595790746221250796258813017148575} a^{19} + \frac{168039457126470156059159}{66123682595790746221250796258813017148575} a^{18} + \frac{473118850421992455073427996555703707}{13224736519158149244250159251762603429715} a^{17} + \frac{1647591453080124863195033193901565064}{66123682595790746221250796258813017148575} a^{16} - \frac{629111386201339487632726269976136281}{66123682595790746221250796258813017148575} a^{15} + \frac{593193464824905146859829987485343901}{66123682595790746221250796258813017148575} a^{14} - \frac{18985952760047198282684626363928264066}{66123682595790746221250796258813017148575} a^{13} - \frac{14977050387818327852594488739026175409}{66123682595790746221250796258813017148575} a^{12} - \frac{119995620429155029732570161142227646646}{66123682595790746221250796258813017148575} a^{11} + \frac{9213147378619488789408148328002601061}{13224736519158149244250159251762603429715} a^{10} - \frac{1102809314465697764832745333694995056873}{66123682595790746221250796258813017148575} a^{9} - \frac{1810037948948948726774579534968438917517}{66123682595790746221250796258813017148575} a^{8} - \frac{291209897449762873771615442612486927997}{66123682595790746221250796258813017148575} a^{7} - \frac{30222599892518648151316644177207830027562}{66123682595790746221250796258813017148575} a^{6} - \frac{31893409124420895140247949264850627786379}{66123682595790746221250796258813017148575} a^{5} + \frac{2247200864826474155875370447648980741942}{9446240370827249460178685179830431021225} a^{4} - \frac{22204699826143152648704194758266881943494}{66123682595790746221250796258813017148575} a^{3} - \frac{25931642812244163225985129140219898659057}{66123682595790746221250796258813017148575} a^{2} + \frac{12074096767812434017662357672669426773781}{66123682595790746221250796258813017148575} a - \frac{1313181643321762350755842194990948974703}{9446240370827249460178685179830431021225}$
Class group and class number
$C_{2}\times C_{2}\times C_{4655642}$, which has order $18622568$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 180801817.57689384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-13}, \sqrt{15})\), 5.5.390625.1, 10.0.68835601043701171875.3, 10.0.58014531250000000000.3, 10.10.189843750000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||