Normalized defining polynomial
\( x^{20} - 45 x^{18} - 20 x^{17} + 1035 x^{16} + 636 x^{15} - 7840 x^{14} + 2360 x^{13} + \cdots + 1584355549 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[0, 10]$ |
| |
| Discriminant: |
\(4968509573481201782226562500000000000000000000\)
\(\medspace = 2^{20}\cdot 3^{10}\cdot 5^{34}\cdot 13^{10}\)
|
| |
| Root discriminant: | \(192.67\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}5^{17/10}13^{1/2}\approx 192.6687618815246$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2\times C_{10}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3900=2^{2}\cdot 3\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3900}(1,·)$, $\chi_{3900}(389,·)$, $\chi_{3900}(571,·)$, $\chi_{3900}(1351,·)$, $\chi_{3900}(3719,·)$, $\chi_{3900}(781,·)$, $\chi_{3900}(1169,·)$, $\chi_{3900}(2131,·)$, $\chi_{3900}(599,·)$, $\chi_{3900}(1561,·)$, $\chi_{3900}(1949,·)$, $\chi_{3900}(2911,·)$, $\chi_{3900}(1379,·)$, $\chi_{3900}(2341,·)$, $\chi_{3900}(2729,·)$, $\chi_{3900}(3691,·)$, $\chi_{3900}(2159,·)$, $\chi_{3900}(3121,·)$, $\chi_{3900}(3509,·)$, $\chi_{3900}(2939,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{512}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7}a^{7}-\frac{1}{7}a$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{2}$, $\frac{1}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{175}a^{10}-\frac{2}{35}a^{8}-\frac{2}{35}a^{7}-\frac{2}{5}a^{6}-\frac{1}{25}a^{5}+\frac{11}{35}a^{4}+\frac{1}{5}a^{3}+\frac{2}{35}a^{2}+\frac{2}{35}a-\frac{1}{25}$, $\frac{1}{175}a^{11}-\frac{2}{35}a^{9}-\frac{2}{35}a^{8}+\frac{1}{35}a^{7}-\frac{1}{25}a^{6}+\frac{11}{35}a^{5}+\frac{1}{5}a^{4}+\frac{2}{35}a^{3}+\frac{2}{35}a^{2}-\frac{82}{175}a$, $\frac{1}{1225}a^{12}+\frac{1}{1225}a^{11}+\frac{1}{1225}a^{10}-\frac{4}{245}a^{9}+\frac{17}{245}a^{8}-\frac{62}{1225}a^{7}-\frac{372}{1225}a^{6}+\frac{538}{1225}a^{5}-\frac{2}{49}a^{4}-\frac{94}{245}a^{3}+\frac{13}{1225}a^{2}+\frac{503}{1225}a+\frac{39}{175}$, $\frac{1}{1225}a^{13}-\frac{2}{35}a^{9}-\frac{1}{175}a^{8}+\frac{1}{245}a^{7}-\frac{16}{35}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{24}{175}a^{3}+\frac{2}{7}a^{2}-\frac{109}{245}a-\frac{12}{35}$, $\frac{1}{8575}a^{14}-\frac{1}{8575}a^{13}-\frac{2}{8575}a^{12}+\frac{12}{8575}a^{11}-\frac{16}{8575}a^{10}-\frac{387}{8575}a^{9}+\frac{542}{8575}a^{8}-\frac{83}{1225}a^{7}-\frac{3449}{8575}a^{6}+\frac{3222}{8575}a^{5}-\frac{572}{8575}a^{4}-\frac{3778}{8575}a^{3}+\frac{3279}{8575}a^{2}-\frac{594}{8575}a+\frac{276}{1225}$, $\frac{1}{8575}a^{15}-\frac{3}{8575}a^{13}+\frac{3}{8575}a^{12}-\frac{11}{8575}a^{11}-\frac{18}{8575}a^{10}+\frac{59}{1715}a^{9}+\frac{346}{8575}a^{8}-\frac{166}{8575}a^{7}+\frac{662}{8575}a^{6}-\frac{772}{1715}a^{5}+\frac{82}{1715}a^{4}-\frac{639}{8575}a^{3}+\frac{1614}{8575}a^{2}+\frac{2962}{8575}a-\frac{389}{1225}$, $\frac{1}{8575}a^{16}-\frac{3}{8575}a^{12}-\frac{17}{8575}a^{11}+\frac{16}{8575}a^{10}-\frac{121}{1715}a^{9}-\frac{107}{1715}a^{8}+\frac{256}{8575}a^{7}-\frac{1922}{8575}a^{6}-\frac{522}{8575}a^{5}-\frac{219}{1715}a^{4}+\frac{72}{1715}a^{3}-\frac{984}{8575}a^{2}+\frac{821}{1715}a+\frac{394}{1225}$, $\frac{1}{8575}a^{17}-\frac{3}{8575}a^{13}-\frac{3}{8575}a^{12}-\frac{19}{8575}a^{11}-\frac{3}{8575}a^{10}-\frac{13}{343}a^{9}-\frac{269}{8575}a^{8}-\frac{68}{1715}a^{7}-\frac{3672}{8575}a^{6}-\frac{374}{8575}a^{5}-\frac{803}{1715}a^{4}+\frac{3951}{8575}a^{3}-\frac{2573}{8575}a^{2}+\frac{52}{175}a-\frac{6}{175}$, $\frac{1}{20\cdots 75}a^{18}-\frac{347916039343}{20\cdots 75}a^{17}+\frac{823483440516}{20\cdots 75}a^{16}-\frac{102215307981}{29\cdots 25}a^{15}+\frac{148661584597}{20\cdots 75}a^{14}+\frac{6727995921543}{20\cdots 75}a^{13}+\frac{477964817927}{40\cdots 35}a^{12}-\frac{33800038161672}{20\cdots 75}a^{11}+\frac{39683221728739}{20\cdots 75}a^{10}-\frac{186469479958939}{20\cdots 75}a^{9}+\frac{457804812328923}{20\cdots 75}a^{8}+\frac{855188327173743}{20\cdots 75}a^{7}+\frac{70\cdots 98}{20\cdots 75}a^{6}+\frac{46064818040044}{202003057305175}a^{5}-\frac{44\cdots 39}{20\cdots 75}a^{4}+\frac{776661118538101}{40\cdots 35}a^{3}-\frac{27\cdots 68}{20\cdots 75}a^{2}+\frac{19\cdots 67}{40\cdots 35}a+\frac{46282465170911}{116584621644701}$, $\frac{1}{66\cdots 75}a^{19}+\frac{16\cdots 59}{66\cdots 75}a^{18}+\frac{47\cdots 07}{13\cdots 15}a^{17}+\frac{16\cdots 64}{66\cdots 75}a^{16}-\frac{62\cdots 81}{66\cdots 75}a^{15}+\frac{59\cdots 01}{66\cdots 75}a^{14}-\frac{18\cdots 66}{66\cdots 75}a^{13}-\frac{14\cdots 09}{66\cdots 75}a^{12}-\frac{11\cdots 46}{66\cdots 75}a^{11}+\frac{92\cdots 61}{13\cdots 15}a^{10}-\frac{11\cdots 73}{66\cdots 75}a^{9}-\frac{18\cdots 17}{66\cdots 75}a^{8}-\frac{29\cdots 97}{66\cdots 75}a^{7}-\frac{30\cdots 62}{66\cdots 75}a^{6}-\frac{31\cdots 79}{66\cdots 75}a^{5}+\frac{22\cdots 42}{94\cdots 25}a^{4}-\frac{22\cdots 94}{66\cdots 75}a^{3}-\frac{25\cdots 57}{66\cdots 75}a^{2}+\frac{12\cdots 81}{66\cdots 75}a-\frac{13\cdots 03}{94\cdots 25}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $7$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{4655642}$, which has order $18622568$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{4655642}$, which has order $18622568$ (assuming GRH) |
| |
| Relative class number: | $9311284$ (assuming GRH) |
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{64\cdots 88}{66\cdots 75}a^{19}+\frac{10\cdots 24}{13\cdots 15}a^{18}-\frac{31\cdots 02}{66\cdots 75}a^{17}-\frac{50\cdots 69}{13\cdots 15}a^{16}+\frac{68\cdots 32}{66\cdots 75}a^{15}+\frac{61\cdots 46}{66\cdots 75}a^{14}-\frac{42\cdots 24}{66\cdots 75}a^{13}-\frac{47\cdots 94}{66\cdots 75}a^{12}+\frac{84\cdots 52}{66\cdots 75}a^{11}+\frac{51\cdots 24}{66\cdots 75}a^{10}+\frac{42\cdots 34}{13\cdots 15}a^{9}+\frac{73\cdots 63}{66\cdots 75}a^{8}+\frac{50\cdots 24}{13\cdots 15}a^{7}+\frac{18\cdots 76}{66\cdots 75}a^{6}+\frac{20\cdots 98}{13\cdots 15}a^{5}+\frac{21\cdots 03}{94\cdots 25}a^{4}+\frac{67\cdots 78}{66\cdots 75}a^{3}+\frac{50\cdots 91}{66\cdots 75}a^{2}-\frac{32\cdots 24}{66\cdots 75}a+\frac{57\cdots 34}{21\cdots 75}$, $\frac{15\cdots 68}{66\cdots 75}a^{19}-\frac{17\cdots 02}{66\cdots 75}a^{18}-\frac{13\cdots 18}{13\cdots 15}a^{17}+\frac{62\cdots 14}{66\cdots 75}a^{16}+\frac{15\cdots 76}{66\cdots 75}a^{15}-\frac{14\cdots 34}{66\cdots 75}a^{14}-\frac{94\cdots 68}{66\cdots 75}a^{13}+\frac{32\cdots 17}{66\cdots 75}a^{12}+\frac{92\cdots 72}{66\cdots 75}a^{11}-\frac{19\cdots 03}{13\cdots 15}a^{10}+\frac{31\cdots 48}{26\cdots 43}a^{9}+\frac{47\cdots 43}{66\cdots 75}a^{8}+\frac{73\cdots 76}{66\cdots 75}a^{7}-\frac{15\cdots 13}{66\cdots 75}a^{6}+\frac{56\cdots 84}{66\cdots 75}a^{5}-\frac{55\cdots 87}{94\cdots 25}a^{4}+\frac{28\cdots 94}{66\cdots 75}a^{3}+\frac{17\cdots 11}{66\cdots 75}a^{2}+\frac{10\cdots 94}{13\cdots 15}a+\frac{14\cdots 01}{21\cdots 75}$, $\frac{18\cdots 12}{66\cdots 75}a^{19}-\frac{32\cdots 54}{66\cdots 75}a^{18}-\frac{85\cdots 92}{66\cdots 75}a^{17}+\frac{11\cdots 69}{66\cdots 75}a^{16}+\frac{20\cdots 04}{66\cdots 75}a^{15}-\frac{22\cdots 56}{66\cdots 75}a^{14}-\frac{18\cdots 44}{66\cdots 75}a^{13}+\frac{60\cdots 97}{13\cdots 15}a^{12}+\frac{16\cdots 12}{66\cdots 75}a^{11}-\frac{16\cdots 73}{66\cdots 75}a^{10}+\frac{51\cdots 94}{13\cdots 15}a^{9}-\frac{10\cdots 23}{66\cdots 75}a^{8}+\frac{97\cdots 12}{66\cdots 75}a^{7}-\frac{12\cdots 13}{66\cdots 75}a^{6}+\frac{42\cdots 62}{66\cdots 75}a^{5}-\frac{18\cdots 23}{94\cdots 25}a^{4}+\frac{31\cdots 04}{66\cdots 75}a^{3}-\frac{39\cdots 92}{66\cdots 75}a^{2}+\frac{20\cdots 78}{26\cdots 43}a-\frac{95\cdots 54}{43\cdots 15}$, $\frac{26\cdots 44}{66\cdots 75}a^{19}-\frac{15\cdots 52}{66\cdots 75}a^{18}-\frac{16\cdots 02}{66\cdots 75}a^{17}+\frac{10\cdots 51}{13\cdots 15}a^{16}+\frac{53\cdots 28}{66\cdots 75}a^{15}-\frac{77\cdots 22}{66\cdots 75}a^{14}-\frac{87\cdots 76}{66\cdots 75}a^{13}-\frac{20\cdots 32}{66\cdots 75}a^{12}+\frac{15\cdots 88}{13\cdots 15}a^{11}-\frac{67\cdots 58}{66\cdots 75}a^{10}-\frac{15\cdots 46}{13\cdots 15}a^{9}-\frac{10\cdots 66}{66\cdots 75}a^{8}+\frac{24\cdots 36}{66\cdots 75}a^{7}-\frac{44\cdots 08}{26\cdots 43}a^{6}-\frac{13\cdots 22}{66\cdots 75}a^{5}-\frac{18\cdots 36}{94\cdots 25}a^{4}+\frac{52\cdots 22}{13\cdots 15}a^{3}-\frac{41\cdots 03}{66\cdots 75}a^{2}-\frac{43\cdots 04}{13\cdots 15}a-\frac{40\cdots 96}{21\cdots 75}$, $\frac{90\cdots 32}{66\cdots 75}a^{19}+\frac{14\cdots 59}{66\cdots 75}a^{18}-\frac{35\cdots 17}{66\cdots 75}a^{17}-\frac{67\cdots 78}{66\cdots 75}a^{16}+\frac{67\cdots 71}{66\cdots 75}a^{15}+\frac{12\cdots 49}{66\cdots 75}a^{14}-\frac{12\cdots 18}{66\cdots 75}a^{13}+\frac{10\cdots 57}{66\cdots 75}a^{12}+\frac{57\cdots 58}{66\cdots 75}a^{11}+\frac{12\cdots 76}{66\cdots 75}a^{10}+\frac{29\cdots 10}{26\cdots 43}a^{9}+\frac{80\cdots 02}{66\cdots 75}a^{8}+\frac{36\cdots 93}{66\cdots 75}a^{7}+\frac{59\cdots 22}{66\cdots 75}a^{6}+\frac{21\cdots 22}{66\cdots 75}a^{5}+\frac{61\cdots 92}{94\cdots 25}a^{4}+\frac{11\cdots 56}{13\cdots 15}a^{3}+\frac{12\cdots 49}{66\cdots 75}a^{2}+\frac{69\cdots 06}{66\cdots 75}a+\frac{47\cdots 19}{21\cdots 75}$, $\frac{92\cdots 79}{66\cdots 75}a^{19}-\frac{31\cdots 61}{13\cdots 15}a^{18}-\frac{42\cdots 16}{66\cdots 75}a^{17}+\frac{62\cdots 42}{66\cdots 75}a^{16}+\frac{10\cdots 28}{66\cdots 75}a^{15}-\frac{14\cdots 57}{66\cdots 75}a^{14}-\frac{79\cdots 47}{66\cdots 75}a^{13}+\frac{23\cdots 23}{66\cdots 75}a^{12}+\frac{12\cdots 06}{13\cdots 15}a^{11}-\frac{13\cdots 88}{66\cdots 75}a^{10}+\frac{71\cdots 34}{13\cdots 15}a^{9}-\frac{26\cdots 81}{66\cdots 75}a^{8}+\frac{88\cdots 56}{13\cdots 15}a^{7}-\frac{25\cdots 92}{66\cdots 75}a^{6}+\frac{26\cdots 58}{66\cdots 75}a^{5}-\frac{13\cdots 96}{94\cdots 25}a^{4}+\frac{14\cdots 59}{66\cdots 75}a^{3}+\frac{14\cdots 53}{66\cdots 75}a^{2}+\frac{25\cdots 22}{66\cdots 75}a+\frac{11\cdots 99}{21\cdots 75}$, $\frac{64\cdots 98}{66\cdots 75}a^{19}+\frac{10\cdots 66}{66\cdots 75}a^{18}-\frac{40\cdots 26}{66\cdots 75}a^{17}-\frac{74\cdots 27}{66\cdots 75}a^{16}+\frac{11\cdots 93}{66\cdots 75}a^{15}+\frac{23\cdots 81}{66\cdots 75}a^{14}-\frac{17\cdots 97}{66\cdots 75}a^{13}-\frac{27\cdots 88}{66\cdots 75}a^{12}+\frac{17\cdots 64}{66\cdots 75}a^{11}+\frac{17\cdots 77}{66\cdots 75}a^{10}-\frac{24\cdots 43}{13\cdots 15}a^{9}-\frac{10\cdots 87}{66\cdots 75}a^{8}+\frac{44\cdots 17}{66\cdots 75}a^{7}+\frac{17\cdots 49}{66\cdots 75}a^{6}-\frac{38\cdots 77}{66\cdots 75}a^{5}-\frac{68\cdots 62}{94\cdots 25}a^{4}-\frac{23\cdots 63}{26\cdots 43}a^{3}-\frac{28\cdots 88}{26\cdots 43}a^{2}-\frac{67\cdots 54}{13\cdots 15}a-\frac{47\cdots 26}{21\cdots 75}$, $\frac{90\cdots 66}{18\cdots 45}a^{19}-\frac{72\cdots 17}{94\cdots 25}a^{18}-\frac{20\cdots 36}{94\cdots 25}a^{17}+\frac{25\cdots 17}{94\cdots 25}a^{16}+\frac{50\cdots 73}{94\cdots 25}a^{15}-\frac{10\cdots 92}{18\cdots 45}a^{14}-\frac{63\cdots 47}{13\cdots 75}a^{13}+\frac{31\cdots 60}{37\cdots 49}a^{12}+\frac{41\cdots 43}{94\cdots 25}a^{11}-\frac{38\cdots 62}{94\cdots 25}a^{10}+\frac{39\cdots 23}{18\cdots 45}a^{9}-\frac{37\cdots 82}{18\cdots 45}a^{8}+\frac{24\cdots 61}{94\cdots 25}a^{7}-\frac{19\cdots 33}{94\cdots 25}a^{6}+\frac{10\cdots 46}{94\cdots 25}a^{5}-\frac{83\cdots 45}{37\cdots 49}a^{4}+\frac{76\cdots 91}{94\cdots 25}a^{3}-\frac{51\cdots 11}{94\cdots 25}a^{2}+\frac{12\cdots 01}{94\cdots 25}a-\frac{23\cdots 88}{31\cdots 25}$, $\frac{25\cdots 76}{17\cdots 75}a^{19}+\frac{52\cdots 23}{34\cdots 15}a^{18}-\frac{27\cdots 04}{17\cdots 75}a^{17}-\frac{24\cdots 88}{34\cdots 15}a^{16}+\frac{46\cdots 14}{17\cdots 75}a^{15}+\frac{29\cdots 92}{17\cdots 75}a^{14}-\frac{11\cdots 77}{34\cdots 75}a^{13}-\frac{25\cdots 38}{17\cdots 75}a^{12}+\frac{16\cdots 29}{17\cdots 75}a^{11}+\frac{24\cdots 23}{17\cdots 75}a^{10}+\frac{45\cdots 93}{34\cdots 15}a^{9}+\frac{37\cdots 51}{17\cdots 75}a^{8}-\frac{11\cdots 77}{34\cdots 15}a^{7}+\frac{93\cdots 27}{17\cdots 75}a^{6}-\frac{16\cdots 99}{34\cdots 15}a^{5}+\frac{16\cdots 33}{34\cdots 75}a^{4}-\frac{51\cdots 44}{17\cdots 75}a^{3}+\frac{37\cdots 51}{24\cdots 25}a^{2}-\frac{16\cdots 73}{17\cdots 75}a+\frac{51\cdots 93}{56\cdots 75}$
|
| |
| Regulator: | \( 180801817.57689384 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 180801817.57689384 \cdot 18622568}{2\cdot\sqrt{4968509573481201782226562500000000000000000000}}\cr\approx \mathstrut & 2.29032958609776 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-13}, \sqrt{15})\), 5.5.390625.1, 10.0.68835601043701171875.3, 10.0.58014531250000000000.3, 10.10.189843750000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.1.0.1}{1} }^{20}$ | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | R | ${\href{/padicField/17.5.0.1}{5} }^{4}$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{10}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }^{4}$ | ${\href{/padicField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.10.2.20a1.1 | $x^{20} + 2 x^{16} + 2 x^{15} + 2 x^{13} + 3 x^{12} + 4 x^{11} + 5 x^{10} + 2 x^{9} + 4 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 3 x^{4} + 6 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $10$ | $20$ | 20T3 | not computed |
|
\(3\)
| 3.10.2.10a1.2 | $x^{20} + 4 x^{16} + 4 x^{15} + 4 x^{14} + 4 x^{12} + 10 x^{11} + 16 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + x^{2} + 4 x + 7$ | $2$ | $10$ | $10$ | 20T3 | $$[\ ]_{2}^{10}$$ |
|
\(5\)
| 5.2.10.34a3.1 | $x^{20} + 40 x^{19} + 740 x^{18} + 8400 x^{17} + 65480 x^{16} + 371968 x^{15} + 1596160 x^{14} + 5299200 x^{13} + 13850080 x^{12} + 28888320 x^{11} + 48612480 x^{10} + 66490880 x^{9} + 74071040 x^{8} + 66846720 x^{7} + 48220160 x^{6} + 27222016 x^{5} + 11680000 x^{4} + 3655680 x^{3} + 783360 x^{2} + 102400 x + 6149$ | $10$ | $2$ | $34$ | not computed | not computed |
|
\(13\)
| 13.10.2.10a1.2 | $x^{20} + 14 x^{15} + 10 x^{14} + 16 x^{13} + 2 x^{12} + 2 x^{11} + 53 x^{10} + 70 x^{9} + 137 x^{8} + 94 x^{7} + 88 x^{6} + 54 x^{5} + 37 x^{4} + 34 x^{3} + 5 x^{2} + 4 x + 17$ | $2$ | $10$ | $10$ | 20T3 | $$[\ ]_{2}^{10}$$ |