Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 112 x^{17} + 194 x^{16} - 88 x^{15} - 380 x^{14} + 1128 x^{13} - 1232 x^{12} - 32 x^{11} + 2600 x^{10} - 4352 x^{9} + 4326 x^{8} - 2744 x^{7} + 1924 x^{6} - 1304 x^{5} + 1047 x^{4} - 72 x^{3} + 168 x^{2} - 96 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4966875620168119680952696832=2^{55}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} + \frac{3}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{14} + \frac{1}{32} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} + \frac{11}{32} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{3}{128} a^{13} - \frac{1}{128} a^{12} + \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{5}{128} a^{7} - \frac{19}{128} a^{6} - \frac{29}{128} a^{5} - \frac{55}{128} a^{4} + \frac{1}{4} a^{3} - \frac{7}{16} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{128} a^{16} - \frac{1}{32} a^{13} + \frac{7}{128} a^{12} + \frac{3}{32} a^{10} - \frac{1}{16} a^{9} + \frac{3}{128} a^{8} + \frac{3}{16} a^{7} - \frac{5}{32} a^{6} - \frac{1}{32} a^{5} + \frac{53}{128} a^{4} + \frac{3}{16} a^{3} - \frac{5}{16} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{256} a^{17} - \frac{1}{256} a^{16} - \frac{1}{64} a^{14} - \frac{5}{256} a^{13} - \frac{7}{256} a^{12} - \frac{1}{64} a^{11} + \frac{3}{64} a^{10} + \frac{11}{256} a^{9} + \frac{21}{256} a^{8} - \frac{11}{64} a^{7} - \frac{3}{16} a^{6} - \frac{55}{256} a^{5} + \frac{99}{256} a^{4} + \frac{5}{16} a^{3} + \frac{13}{32} a^{2} - \frac{7}{16} a - \frac{3}{16}$, $\frac{1}{209681408} a^{18} - \frac{72097}{104840704} a^{17} + \frac{87731}{209681408} a^{16} - \frac{26183}{52420352} a^{15} - \frac{1688929}{209681408} a^{14} - \frac{456209}{104840704} a^{13} + \frac{2583297}{209681408} a^{12} + \frac{312333}{13105088} a^{11} - \frac{241705}{2161664} a^{10} - \frac{12175827}{104840704} a^{9} + \frac{574133}{209681408} a^{8} - \frac{2808767}{52420352} a^{7} + \frac{1783313}{209681408} a^{6} - \frac{19934171}{104840704} a^{5} + \frac{85844359}{209681408} a^{4} - \frac{2773807}{26210176} a^{3} - \frac{8257701}{26210176} a^{2} + \frac{14739}{204767} a - \frac{4888791}{13105088}$, $\frac{1}{838725632} a^{19} - \frac{1}{838725632} a^{18} - \frac{455599}{838725632} a^{17} + \frac{405159}{838725632} a^{16} + \frac{303715}{838725632} a^{15} - \frac{7353955}{838725632} a^{14} - \frac{267393}{8646656} a^{13} - \frac{3955935}{838725632} a^{12} + \frac{38532679}{838725632} a^{11} + \frac{100325841}{838725632} a^{10} + \frac{7044911}{838725632} a^{9} - \frac{46155287}{838725632} a^{8} - \frac{155422027}{838725632} a^{7} + \frac{143370107}{838725632} a^{6} + \frac{14803345}{838725632} a^{5} + \frac{79710079}{838725632} a^{4} + \frac{9516711}{26210176} a^{3} - \frac{15089557}{104840704} a^{2} - \frac{25574647}{52420352} a + \frac{16176761}{52420352}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3641112.82209 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.346112.2, 5.1.346112.1 x5, 10.2.958348132352.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.346112.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |