Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} + 6 x^{17} + x^{16} + 2 x^{15} + 20 x^{14} + 20 x^{13} + 81 x^{12} + 82 x^{11} + 56 x^{10} + 110 x^{9} + 140 x^{8} + 340 x^{7} + 676 x^{6} + 872 x^{5} + 1057 x^{4} + 988 x^{3} + 628 x^{2} + 332 x + 131 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49338146756019243307761664=2^{30}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{13} - \frac{4}{11} a^{12} + \frac{2}{11} a^{11} + \frac{4}{11} a^{10} - \frac{4}{11} a^{9} + \frac{4}{11} a^{8} + \frac{2}{11} a^{7} - \frac{3}{11} a^{6} - \frac{2}{11} a^{5} - \frac{2}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{5}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} - \frac{4}{11} a^{13} + \frac{2}{11} a^{12} + \frac{4}{11} a^{11} - \frac{4}{11} a^{10} + \frac{4}{11} a^{9} + \frac{2}{11} a^{8} - \frac{3}{11} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} - \frac{1}{11} a^{4} + \frac{1}{11} a^{3} - \frac{5}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{14} - \frac{3}{11} a^{13} - \frac{1}{11} a^{12} + \frac{4}{11} a^{11} - \frac{2}{11} a^{10} - \frac{3}{11} a^{9} + \frac{2}{11} a^{8} - \frac{5}{11} a^{7} - \frac{3}{11} a^{6} + \frac{2}{11} a^{5} + \frac{4}{11} a^{4} + \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a - \frac{4}{11}$, $\frac{1}{253} a^{18} - \frac{1}{253} a^{17} - \frac{5}{253} a^{16} + \frac{7}{253} a^{15} - \frac{100}{253} a^{14} + \frac{4}{23} a^{13} - \frac{49}{253} a^{12} + \frac{29}{253} a^{11} - \frac{102}{253} a^{10} - \frac{125}{253} a^{9} + \frac{60}{253} a^{8} - \frac{5}{11} a^{7} + \frac{125}{253} a^{6} - \frac{87}{253} a^{5} + \frac{3}{11} a^{4} + \frac{106}{253} a^{3} + \frac{13}{253} a^{2} + \frac{43}{253} a - \frac{51}{253}$, $\frac{1}{589444403621731022299} a^{19} - \frac{617391642588283746}{589444403621731022299} a^{18} - \frac{5768284725188774244}{589444403621731022299} a^{17} + \frac{7929187853641615585}{589444403621731022299} a^{16} - \frac{307275416206411597}{25628017548770914013} a^{15} - \frac{28972782711596796672}{589444403621731022299} a^{14} - \frac{20264627127552497031}{589444403621731022299} a^{13} + \frac{162328076493306445387}{589444403621731022299} a^{12} + \frac{7707193356341663207}{53585854874702820209} a^{11} - \frac{294400948071543998453}{589444403621731022299} a^{10} + \frac{136732316605189880658}{589444403621731022299} a^{9} - \frac{169519933002461246399}{589444403621731022299} a^{8} + \frac{194989869568475101212}{589444403621731022299} a^{7} - \frac{9534521318202996556}{25628017548770914013} a^{6} + \frac{11437105477841624712}{53585854874702820209} a^{5} - \frac{1982899899885014366}{53585854874702820209} a^{4} + \frac{231383550097191677087}{589444403621731022299} a^{3} - \frac{168299966909117994433}{589444403621731022299} a^{2} + \frac{25458119932028392103}{53585854874702820209} a + \frac{18129648494721281331}{53585854874702820209}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36792.3507976 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T46):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.219503494144.1, 10.4.219503494144.2, 10.2.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |