Properties

Label 20.0.493...664.2
Degree $20$
Signature $[0, 10]$
Discriminant $4.934\times 10^{25}$
Root discriminant \(19.26\)
Ramified primes $2,11$
Class number $1$
Class group trivial
Galois group $C_2\wr C_5$ (as 20T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131)
 
gp: K = bnfinit(y^20 - 2*y^19 + 2*y^18 + 6*y^17 + y^16 + 2*y^15 + 20*y^14 + 20*y^13 + 81*y^12 + 82*y^11 + 56*y^10 + 110*y^9 + 140*y^8 + 340*y^7 + 676*y^6 + 872*y^5 + 1057*y^4 + 988*y^3 + 628*y^2 + 332*y + 131, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131)
 

\( x^{20} - 2 x^{19} + 2 x^{18} + 6 x^{17} + x^{16} + 2 x^{15} + 20 x^{14} + 20 x^{13} + 81 x^{12} + \cdots + 131 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(49338146756019243307761664\) \(\medspace = 2^{30}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{31/16}11^{4/5}\approx 26.08313353110776$
Ramified primes:   \(2\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11}a^{15}-\frac{4}{11}a^{13}-\frac{4}{11}a^{12}+\frac{2}{11}a^{11}+\frac{4}{11}a^{10}-\frac{4}{11}a^{9}+\frac{4}{11}a^{8}+\frac{2}{11}a^{7}-\frac{3}{11}a^{6}-\frac{2}{11}a^{5}-\frac{2}{11}a^{4}-\frac{1}{11}a^{3}+\frac{1}{11}a^{2}-\frac{5}{11}a-\frac{1}{11}$, $\frac{1}{11}a^{16}-\frac{4}{11}a^{14}-\frac{4}{11}a^{13}+\frac{2}{11}a^{12}+\frac{4}{11}a^{11}-\frac{4}{11}a^{10}+\frac{4}{11}a^{9}+\frac{2}{11}a^{8}-\frac{3}{11}a^{7}-\frac{2}{11}a^{6}-\frac{2}{11}a^{5}-\frac{1}{11}a^{4}+\frac{1}{11}a^{3}-\frac{5}{11}a^{2}-\frac{1}{11}a$, $\frac{1}{11}a^{17}-\frac{4}{11}a^{14}-\frac{3}{11}a^{13}-\frac{1}{11}a^{12}+\frac{4}{11}a^{11}-\frac{2}{11}a^{10}-\frac{3}{11}a^{9}+\frac{2}{11}a^{8}-\frac{5}{11}a^{7}-\frac{3}{11}a^{6}+\frac{2}{11}a^{5}+\frac{4}{11}a^{4}+\frac{2}{11}a^{3}+\frac{3}{11}a^{2}+\frac{2}{11}a-\frac{4}{11}$, $\frac{1}{253}a^{18}-\frac{1}{253}a^{17}-\frac{5}{253}a^{16}+\frac{7}{253}a^{15}-\frac{100}{253}a^{14}+\frac{4}{23}a^{13}-\frac{49}{253}a^{12}+\frac{29}{253}a^{11}-\frac{102}{253}a^{10}-\frac{125}{253}a^{9}+\frac{60}{253}a^{8}-\frac{5}{11}a^{7}+\frac{125}{253}a^{6}-\frac{87}{253}a^{5}+\frac{3}{11}a^{4}+\frac{106}{253}a^{3}+\frac{13}{253}a^{2}+\frac{43}{253}a-\frac{51}{253}$, $\frac{1}{58\!\cdots\!99}a^{19}-\frac{61\!\cdots\!46}{58\!\cdots\!99}a^{18}-\frac{57\!\cdots\!44}{58\!\cdots\!99}a^{17}+\frac{79\!\cdots\!85}{58\!\cdots\!99}a^{16}-\frac{30\!\cdots\!97}{25\!\cdots\!13}a^{15}-\frac{28\!\cdots\!72}{58\!\cdots\!99}a^{14}-\frac{20\!\cdots\!31}{58\!\cdots\!99}a^{13}+\frac{16\!\cdots\!87}{58\!\cdots\!99}a^{12}+\frac{77\!\cdots\!07}{53\!\cdots\!09}a^{11}-\frac{29\!\cdots\!53}{58\!\cdots\!99}a^{10}+\frac{13\!\cdots\!58}{58\!\cdots\!99}a^{9}-\frac{16\!\cdots\!99}{58\!\cdots\!99}a^{8}+\frac{19\!\cdots\!12}{58\!\cdots\!99}a^{7}-\frac{95\!\cdots\!56}{25\!\cdots\!13}a^{6}+\frac{11\!\cdots\!12}{53\!\cdots\!09}a^{5}-\frac{19\!\cdots\!66}{53\!\cdots\!09}a^{4}+\frac{23\!\cdots\!87}{58\!\cdots\!99}a^{3}-\frac{16\!\cdots\!33}{58\!\cdots\!99}a^{2}+\frac{25\!\cdots\!03}{53\!\cdots\!09}a+\frac{18\!\cdots\!31}{53\!\cdots\!09}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{47\!\cdots\!46}{58\!\cdots\!99}a^{19}-\frac{10\!\cdots\!90}{58\!\cdots\!99}a^{18}+\frac{98\!\cdots\!71}{53\!\cdots\!09}a^{17}+\frac{29\!\cdots\!05}{58\!\cdots\!99}a^{16}-\frac{36\!\cdots\!01}{25\!\cdots\!13}a^{15}+\frac{24\!\cdots\!13}{58\!\cdots\!99}a^{14}+\frac{77\!\cdots\!43}{58\!\cdots\!99}a^{13}+\frac{92\!\cdots\!81}{58\!\cdots\!99}a^{12}+\frac{36\!\cdots\!27}{58\!\cdots\!99}a^{11}+\frac{34\!\cdots\!04}{58\!\cdots\!99}a^{10}+\frac{17\!\cdots\!92}{58\!\cdots\!99}a^{9}+\frac{62\!\cdots\!36}{58\!\cdots\!99}a^{8}+\frac{32\!\cdots\!98}{58\!\cdots\!99}a^{7}+\frac{72\!\cdots\!54}{25\!\cdots\!13}a^{6}+\frac{29\!\cdots\!44}{58\!\cdots\!99}a^{5}+\frac{35\!\cdots\!20}{58\!\cdots\!99}a^{4}+\frac{44\!\cdots\!65}{58\!\cdots\!99}a^{3}+\frac{36\!\cdots\!76}{58\!\cdots\!99}a^{2}+\frac{22\!\cdots\!01}{58\!\cdots\!99}a+\frac{11\!\cdots\!36}{58\!\cdots\!99}$, $\frac{44\!\cdots\!19}{58\!\cdots\!99}a^{19}-\frac{99\!\cdots\!86}{58\!\cdots\!99}a^{18}+\frac{11\!\cdots\!15}{58\!\cdots\!99}a^{17}+\frac{20\!\cdots\!42}{53\!\cdots\!09}a^{16}+\frac{10\!\cdots\!11}{25\!\cdots\!13}a^{15}+\frac{26\!\cdots\!03}{58\!\cdots\!99}a^{14}+\frac{89\!\cdots\!64}{58\!\cdots\!99}a^{13}+\frac{77\!\cdots\!45}{58\!\cdots\!99}a^{12}+\frac{32\!\cdots\!40}{58\!\cdots\!99}a^{11}+\frac{25\!\cdots\!41}{58\!\cdots\!99}a^{10}+\frac{25\!\cdots\!48}{58\!\cdots\!99}a^{9}+\frac{37\!\cdots\!84}{58\!\cdots\!99}a^{8}+\frac{43\!\cdots\!71}{58\!\cdots\!99}a^{7}+\frac{54\!\cdots\!16}{23\!\cdots\!83}a^{6}+\frac{26\!\cdots\!54}{58\!\cdots\!99}a^{5}+\frac{34\!\cdots\!76}{58\!\cdots\!99}a^{4}+\frac{38\!\cdots\!99}{58\!\cdots\!99}a^{3}+\frac{31\!\cdots\!80}{58\!\cdots\!99}a^{2}+\frac{13\!\cdots\!39}{58\!\cdots\!99}a+\frac{61\!\cdots\!93}{58\!\cdots\!99}$, $\frac{14\!\cdots\!65}{25\!\cdots\!13}a^{19}-\frac{52\!\cdots\!76}{25\!\cdots\!13}a^{18}+\frac{91\!\cdots\!44}{25\!\cdots\!13}a^{17}-\frac{15\!\cdots\!05}{25\!\cdots\!13}a^{16}-\frac{12\!\cdots\!99}{25\!\cdots\!13}a^{15}-\frac{54\!\cdots\!00}{25\!\cdots\!13}a^{14}+\frac{29\!\cdots\!39}{25\!\cdots\!13}a^{13}-\frac{14\!\cdots\!96}{25\!\cdots\!13}a^{12}+\frac{10\!\cdots\!52}{25\!\cdots\!13}a^{11}-\frac{90\!\cdots\!03}{25\!\cdots\!13}a^{10}+\frac{33\!\cdots\!60}{25\!\cdots\!13}a^{9}-\frac{32\!\cdots\!20}{25\!\cdots\!13}a^{8}+\frac{14\!\cdots\!15}{25\!\cdots\!13}a^{7}+\frac{19\!\cdots\!27}{25\!\cdots\!13}a^{6}+\frac{32\!\cdots\!46}{25\!\cdots\!13}a^{5}+\frac{51\!\cdots\!45}{25\!\cdots\!13}a^{4}+\frac{10\!\cdots\!48}{25\!\cdots\!13}a^{3}-\frac{26\!\cdots\!11}{25\!\cdots\!13}a^{2}-\frac{21\!\cdots\!73}{25\!\cdots\!13}a-\frac{13\!\cdots\!90}{25\!\cdots\!13}$, $\frac{28\!\cdots\!24}{58\!\cdots\!99}a^{19}-\frac{15\!\cdots\!64}{58\!\cdots\!99}a^{18}+\frac{32\!\cdots\!55}{58\!\cdots\!99}a^{17}-\frac{22\!\cdots\!97}{58\!\cdots\!99}a^{16}-\frac{84\!\cdots\!87}{25\!\cdots\!13}a^{15}+\frac{13\!\cdots\!88}{58\!\cdots\!99}a^{14}+\frac{38\!\cdots\!04}{58\!\cdots\!99}a^{13}-\frac{85\!\cdots\!26}{58\!\cdots\!99}a^{12}+\frac{15\!\cdots\!94}{58\!\cdots\!99}a^{11}-\frac{44\!\cdots\!86}{58\!\cdots\!99}a^{10}+\frac{54\!\cdots\!61}{58\!\cdots\!99}a^{9}+\frac{57\!\cdots\!52}{58\!\cdots\!99}a^{8}-\frac{16\!\cdots\!90}{58\!\cdots\!99}a^{7}+\frac{18\!\cdots\!57}{25\!\cdots\!13}a^{6}-\frac{65\!\cdots\!37}{53\!\cdots\!09}a^{5}-\frac{12\!\cdots\!02}{58\!\cdots\!99}a^{4}-\frac{11\!\cdots\!14}{53\!\cdots\!09}a^{3}-\frac{16\!\cdots\!37}{58\!\cdots\!99}a^{2}-\frac{48\!\cdots\!83}{58\!\cdots\!99}a+\frac{11\!\cdots\!63}{58\!\cdots\!99}$, $\frac{52\!\cdots\!57}{58\!\cdots\!99}a^{19}-\frac{96\!\cdots\!32}{58\!\cdots\!99}a^{18}+\frac{19\!\cdots\!63}{58\!\cdots\!99}a^{17}+\frac{51\!\cdots\!09}{58\!\cdots\!99}a^{16}-\frac{82\!\cdots\!63}{25\!\cdots\!13}a^{15}-\frac{55\!\cdots\!64}{58\!\cdots\!99}a^{14}+\frac{10\!\cdots\!86}{58\!\cdots\!99}a^{13}+\frac{10\!\cdots\!61}{58\!\cdots\!99}a^{12}+\frac{33\!\cdots\!99}{58\!\cdots\!99}a^{11}+\frac{41\!\cdots\!49}{58\!\cdots\!99}a^{10}-\frac{21\!\cdots\!02}{58\!\cdots\!99}a^{9}+\frac{45\!\cdots\!19}{58\!\cdots\!99}a^{8}+\frac{59\!\cdots\!65}{58\!\cdots\!99}a^{7}+\frac{62\!\cdots\!44}{25\!\cdots\!13}a^{6}+\frac{32\!\cdots\!67}{58\!\cdots\!99}a^{5}+\frac{28\!\cdots\!71}{58\!\cdots\!99}a^{4}+\frac{30\!\cdots\!79}{58\!\cdots\!99}a^{3}+\frac{22\!\cdots\!12}{58\!\cdots\!99}a^{2}-\frac{63\!\cdots\!24}{53\!\cdots\!09}a-\frac{29\!\cdots\!55}{58\!\cdots\!99}$, $\frac{36\!\cdots\!39}{25\!\cdots\!13}a^{19}-\frac{10\!\cdots\!20}{25\!\cdots\!13}a^{18}+\frac{17\!\cdots\!14}{25\!\cdots\!13}a^{17}+\frac{55\!\cdots\!59}{25\!\cdots\!13}a^{16}-\frac{23\!\cdots\!90}{25\!\cdots\!13}a^{15}+\frac{15\!\cdots\!64}{25\!\cdots\!13}a^{14}+\frac{60\!\cdots\!39}{25\!\cdots\!13}a^{13}+\frac{11\!\cdots\!65}{25\!\cdots\!13}a^{12}+\frac{29\!\cdots\!10}{25\!\cdots\!13}a^{11}+\frac{60\!\cdots\!06}{25\!\cdots\!13}a^{10}+\frac{16\!\cdots\!99}{25\!\cdots\!13}a^{9}+\frac{28\!\cdots\!25}{25\!\cdots\!13}a^{8}+\frac{23\!\cdots\!35}{25\!\cdots\!13}a^{7}+\frac{97\!\cdots\!44}{23\!\cdots\!83}a^{6}+\frac{14\!\cdots\!93}{23\!\cdots\!83}a^{5}+\frac{18\!\cdots\!36}{25\!\cdots\!13}a^{4}+\frac{24\!\cdots\!73}{25\!\cdots\!13}a^{3}+\frac{18\!\cdots\!49}{25\!\cdots\!13}a^{2}+\frac{98\!\cdots\!95}{25\!\cdots\!13}a+\frac{73\!\cdots\!07}{25\!\cdots\!13}$, $\frac{79\!\cdots\!15}{58\!\cdots\!99}a^{19}+\frac{87\!\cdots\!46}{53\!\cdots\!09}a^{18}-\frac{21\!\cdots\!95}{58\!\cdots\!99}a^{17}-\frac{12\!\cdots\!82}{58\!\cdots\!99}a^{16}+\frac{18\!\cdots\!36}{25\!\cdots\!13}a^{15}-\frac{11\!\cdots\!49}{58\!\cdots\!99}a^{14}-\frac{30\!\cdots\!52}{58\!\cdots\!99}a^{13}+\frac{10\!\cdots\!47}{58\!\cdots\!99}a^{12}+\frac{17\!\cdots\!74}{58\!\cdots\!99}a^{11}+\frac{88\!\cdots\!15}{58\!\cdots\!99}a^{10}+\frac{28\!\cdots\!90}{58\!\cdots\!99}a^{9}-\frac{57\!\cdots\!81}{58\!\cdots\!99}a^{8}+\frac{26\!\cdots\!25}{58\!\cdots\!99}a^{7}+\frac{35\!\cdots\!17}{25\!\cdots\!13}a^{6}+\frac{10\!\cdots\!81}{58\!\cdots\!99}a^{5}+\frac{21\!\cdots\!00}{58\!\cdots\!99}a^{4}+\frac{22\!\cdots\!89}{58\!\cdots\!99}a^{3}+\frac{11\!\cdots\!55}{58\!\cdots\!99}a^{2}+\frac{13\!\cdots\!12}{58\!\cdots\!99}a+\frac{69\!\cdots\!83}{58\!\cdots\!99}$, $\frac{74\!\cdots\!43}{58\!\cdots\!99}a^{19}-\frac{21\!\cdots\!35}{58\!\cdots\!99}a^{18}+\frac{28\!\cdots\!98}{58\!\cdots\!99}a^{17}+\frac{40\!\cdots\!93}{58\!\cdots\!99}a^{16}-\frac{27\!\cdots\!34}{25\!\cdots\!13}a^{15}+\frac{48\!\cdots\!40}{58\!\cdots\!99}a^{14}+\frac{15\!\cdots\!05}{58\!\cdots\!99}a^{13}-\frac{52\!\cdots\!85}{58\!\cdots\!99}a^{12}+\frac{50\!\cdots\!55}{58\!\cdots\!99}a^{11}+\frac{25\!\cdots\!24}{58\!\cdots\!99}a^{10}-\frac{36\!\cdots\!48}{58\!\cdots\!99}a^{9}+\frac{88\!\cdots\!58}{58\!\cdots\!99}a^{8}+\frac{45\!\cdots\!21}{58\!\cdots\!99}a^{7}+\frac{61\!\cdots\!77}{25\!\cdots\!13}a^{6}+\frac{31\!\cdots\!48}{58\!\cdots\!99}a^{5}+\frac{23\!\cdots\!96}{58\!\cdots\!99}a^{4}+\frac{26\!\cdots\!32}{58\!\cdots\!99}a^{3}+\frac{17\!\cdots\!05}{53\!\cdots\!09}a^{2}-\frac{92\!\cdots\!54}{58\!\cdots\!99}a+\frac{85\!\cdots\!85}{58\!\cdots\!99}$, $\frac{17\!\cdots\!95}{58\!\cdots\!99}a^{19}-\frac{11\!\cdots\!91}{58\!\cdots\!99}a^{18}+\frac{14\!\cdots\!38}{58\!\cdots\!99}a^{17}+\frac{18\!\cdots\!60}{58\!\cdots\!99}a^{16}-\frac{40\!\cdots\!99}{25\!\cdots\!13}a^{15}+\frac{99\!\cdots\!72}{58\!\cdots\!99}a^{14}+\frac{40\!\cdots\!42}{53\!\cdots\!09}a^{13}-\frac{12\!\cdots\!07}{58\!\cdots\!99}a^{12}-\frac{14\!\cdots\!74}{58\!\cdots\!99}a^{11}-\frac{39\!\cdots\!21}{58\!\cdots\!99}a^{10}-\frac{85\!\cdots\!62}{53\!\cdots\!09}a^{9}+\frac{21\!\cdots\!47}{58\!\cdots\!99}a^{8}-\frac{71\!\cdots\!12}{58\!\cdots\!99}a^{7}-\frac{24\!\cdots\!63}{25\!\cdots\!13}a^{6}-\frac{16\!\cdots\!91}{58\!\cdots\!99}a^{5}-\frac{45\!\cdots\!48}{58\!\cdots\!99}a^{4}-\frac{60\!\cdots\!90}{58\!\cdots\!99}a^{3}-\frac{64\!\cdots\!84}{58\!\cdots\!99}a^{2}-\frac{61\!\cdots\!22}{58\!\cdots\!99}a-\frac{23\!\cdots\!20}{58\!\cdots\!99}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 36792.3507976 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 36792.3507976 \cdot 1}{2\cdot\sqrt{49338146756019243307761664}}\cr\approx \mathstrut & 0.251150940640 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 2*x^19 + 2*x^18 + 6*x^17 + x^16 + 2*x^15 + 20*x^14 + 20*x^13 + 81*x^12 + 82*x^11 + 56*x^10 + 110*x^9 + 140*x^8 + 340*x^7 + 676*x^6 + 872*x^5 + 1057*x^4 + 988*x^3 + 628*x^2 + 332*x + 131);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr C_5$ (as 20T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\wr C_5$
Character table for $C_2\wr C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.219503494144.1, 10.4.219503494144.2, 10.2.219503494144.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.8.219503494144.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{4}$ ${\href{/padicField/7.10.0.1}{10} }^{2}$ R ${\href{/padicField/13.5.0.1}{5} }^{4}$ ${\href{/padicField/17.5.0.1}{5} }^{4}$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }^{8}$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{4}$ ${\href{/padicField/41.5.0.1}{5} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{8}$ ${\href{/padicField/47.10.0.1}{10} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{4}$ ${\href{/padicField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$4$$5$$30$
\(11\) Copy content Toggle raw display 11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$