Normalized defining polynomial
\( x^{20} - 8 x^{19} + 34 x^{18} - 116 x^{17} + 338 x^{16} - 836 x^{15} + 1840 x^{14} - 3640 x^{13} + 6408 x^{12} - 10176 x^{11} + 14560 x^{10} - 18560 x^{9} + 21128 x^{8} - 21328 x^{7} + 18704 x^{6} - 14048 x^{5} + 8976 x^{4} - 4576 x^{3} + 1760 x^{2} - 704 x + 352 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49338146756019243307761664=2^{30}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{688} a^{18} + \frac{19}{688} a^{17} + \frac{7}{344} a^{16} - \frac{9}{344} a^{15} - \frac{21}{344} a^{14} - \frac{15}{344} a^{13} + \frac{3}{86} a^{12} + \frac{3}{172} a^{11} - \frac{5}{86} a^{10} + \frac{4}{43} a^{9} - \frac{15}{172} a^{8} - \frac{7}{43} a^{7} + \frac{2}{43} a^{6} + \frac{1}{43} a^{5} + \frac{1}{43} a^{4} - \frac{8}{43} a^{3} - \frac{16}{43} a^{2} + \frac{20}{43} a + \frac{19}{43}$, $\frac{1}{3406356112} a^{19} - \frac{625525}{1703178056} a^{18} + \frac{29140343}{3406356112} a^{17} + \frac{39878045}{1703178056} a^{16} + \frac{5102225}{212897257} a^{15} - \frac{23406541}{1703178056} a^{14} - \frac{1161701}{1703178056} a^{13} + \frac{5472279}{851589028} a^{12} + \frac{36719243}{851589028} a^{11} - \frac{73021841}{851589028} a^{10} - \frac{15395449}{425794514} a^{9} - \frac{30789639}{425794514} a^{8} + \frac{6041046}{212897257} a^{7} - \frac{46713705}{212897257} a^{6} + \frac{64208451}{425794514} a^{5} - \frac{2045967}{425794514} a^{4} - \frac{9305043}{212897257} a^{3} - \frac{14462082}{212897257} a^{2} + \frac{14495725}{212897257} a - \frac{53617858}{212897257}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43044.7776734 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5$ (as 20T17):
| A solvable group of order 80 |
| The 8 conjugacy class representatives for $C_2^4:C_5$ |
| Character table for $C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.219503494144.1 x2, 10.6.219503494144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |