Normalized defining polynomial
\( x^{20} - 4 x^{19} + 19 x^{18} - 32 x^{17} + 95 x^{16} - 91 x^{15} + 320 x^{14} - 163 x^{13} + 676 x^{12} - 43 x^{11} + 1048 x^{10} + 129 x^{9} + 927 x^{8} + 299 x^{7} + 576 x^{6} + 152 x^{5} + 130 x^{4} + 34 x^{3} + 21 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49008711322611047193837890625=3^{10}\cdot 5^{10}\cdot 419^{2}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} - \frac{6}{13} a^{17} - \frac{2}{13} a^{16} + \frac{1}{13} a^{15} + \frac{3}{13} a^{14} + \frac{6}{13} a^{11} + \frac{1}{13} a^{10} + \frac{4}{13} a^{9} + \frac{6}{13} a^{8} - \frac{2}{13} a^{7} + \frac{5}{13} a^{6} + \frac{4}{13} a^{5} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} + \frac{2}{13}$, $\frac{1}{6061522289697179279} a^{19} - \frac{202430534899637212}{6061522289697179279} a^{18} + \frac{465185615638738392}{6061522289697179279} a^{17} - \frac{83011570651921622}{466270945361321483} a^{16} + \frac{2254164603998173825}{6061522289697179279} a^{15} + \frac{1082566193444505713}{6061522289697179279} a^{14} + \frac{49947449980935545}{466270945361321483} a^{13} - \frac{1571058483182505090}{6061522289697179279} a^{12} + \frac{374889206044363183}{6061522289697179279} a^{11} + \frac{108642068982336043}{6061522289697179279} a^{10} - \frac{1209142734672951226}{6061522289697179279} a^{9} - \frac{394153634918993494}{6061522289697179279} a^{8} + \frac{79511223586134071}{6061522289697179279} a^{7} - \frac{91012415978103242}{466270945361321483} a^{6} - \frac{1189575142096405192}{6061522289697179279} a^{5} - \frac{1099010363719159209}{6061522289697179279} a^{4} + \frac{1563007180623317269}{6061522289697179279} a^{3} + \frac{1813935268680334117}{6061522289697179279} a^{2} - \frac{475336632056498483}{6061522289697179279} a - \frac{2497499825697124546}{6061522289697179279}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1632393088200393874}{6061522289697179279} a^{19} - \frac{6467891859143458924}{6061522289697179279} a^{18} + \frac{30699169188839777865}{6061522289697179279} a^{17} - \frac{50865675637524136632}{6061522289697179279} a^{16} + \frac{152105019082717176514}{6061522289697179279} a^{15} - \frac{10920883947533548362}{466270945361321483} a^{14} + \frac{39439621391469936102}{466270945361321483} a^{13} - \frac{247362926824828144800}{6061522289697179279} a^{12} + \frac{1078429721448063452004}{6061522289697179279} a^{11} - \frac{41434475175582463010}{6061522289697179279} a^{10} + \frac{1674763227994037146730}{6061522289697179279} a^{9} + \frac{229063617564274157579}{6061522289697179279} a^{8} + \frac{1454499658062648406606}{6061522289697179279} a^{7} + \frac{463164264512908457008}{6061522289697179279} a^{6} + \frac{68713882104411684048}{466270945361321483} a^{5} + \frac{205792264809694379546}{6061522289697179279} a^{4} + \frac{169025023830560851014}{6061522289697179279} a^{3} + \frac{1286483868039617338}{466270945361321483} a^{2} + \frac{25680551272583853368}{6061522289697179279} a + \frac{366804933813745930}{466270945361321483} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161078.71489 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n656 are not computed |
| Character table for t20n656 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||