Normalized defining polynomial
\( x^{20} + x^{18} - 2 x^{17} - 6 x^{16} + 4 x^{15} + 30 x^{14} - 36 x^{13} - 15 x^{12} + 12 x^{11} + 48 x^{10} + 12 x^{9} - 123 x^{8} + 36 x^{7} + 153 x^{6} - 124 x^{5} - 66 x^{4} + 110 x^{3} - 11 x^{2} - 30 x + 10 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48807303526718226903859200=2^{20}\cdot 3^{14}\cdot 5^{2}\cdot 17\cdot 389^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17, 389$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{3} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{4}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{2}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{6} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{4}{9} a^{11} - \frac{4}{9} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4} - \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{335998833678} a^{19} - \frac{4066994779}{335998833678} a^{18} - \frac{2124248102}{167999416839} a^{17} - \frac{7033294271}{167999416839} a^{16} + \frac{2710694774}{18666601871} a^{15} - \frac{557116730}{167999416839} a^{14} + \frac{1235894102}{167999416839} a^{13} + \frac{9507379331}{167999416839} a^{12} - \frac{33001016629}{335998833678} a^{11} + \frac{75950012641}{335998833678} a^{10} - \frac{136966443317}{335998833678} a^{9} + \frac{15357969661}{335998833678} a^{8} - \frac{68862207425}{167999416839} a^{7} + \frac{72971545375}{167999416839} a^{6} + \frac{46745495521}{111999611226} a^{5} + \frac{158256668633}{335998833678} a^{4} - \frac{42941743073}{335998833678} a^{3} - \frac{154420771789}{335998833678} a^{2} - \frac{25613905436}{167999416839} a + \frac{20251405136}{55999805613}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{37237033575}{37333203742} a^{19} + \frac{18089270573}{37333203742} a^{18} + \frac{25182750708}{18666601871} a^{17} - \frac{26162952984}{18666601871} a^{16} - \frac{122034637410}{18666601871} a^{15} + \frac{8276337450}{18666601871} a^{14} + \frac{551906647461}{18666601871} a^{13} - \frac{389143659054}{18666601871} a^{12} - \frac{812329361505}{37333203742} a^{11} - \frac{156145214925}{37333203742} a^{10} + \frac{1738241536913}{37333203742} a^{9} + \frac{1283349259845}{37333203742} a^{8} - \frac{1850565962205}{18666601871} a^{7} - \frac{251477735085}{18666601871} a^{6} + \frac{4949042465637}{37333203742} a^{5} - \frac{1918927229103}{37333203742} a^{4} - \frac{2896954768023}{37333203742} a^{3} + \frac{2059653039849}{37333203742} a^{2} + \frac{303240108825}{18666601871} a - \frac{261786271292}{18666601871} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 198372.566362 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 409600 |
| The 190 conjugacy class representatives for t20n925 are not computed |
| Character table for t20n925 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 10.0.112960521216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | $20$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 389 | Data not computed | ||||||