Normalized defining polynomial
\( x^{20} - x^{19} - 2 x^{17} + 3 x^{16} - 6 x^{15} + 11 x^{14} + 10 x^{13} + 15 x^{12} - 19 x^{11} - 15 x^{10} - 19 x^{9} + 15 x^{8} + 10 x^{7} + 11 x^{6} - 6 x^{5} + 3 x^{4} - 2 x^{3} - x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(487396615698744004253529=3^{6}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{3} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{7} - \frac{4}{9} a^{6} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{2}{9} a^{11} + \frac{2}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{4}{9} a^{6} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{2241} a^{18} - \frac{14}{747} a^{17} - \frac{22}{2241} a^{16} + \frac{65}{747} a^{15} - \frac{251}{2241} a^{14} - \frac{368}{2241} a^{13} + \frac{161}{2241} a^{12} + \frac{998}{2241} a^{11} - \frac{53}{249} a^{10} + \frac{287}{747} a^{9} + \frac{113}{249} a^{8} + \frac{749}{2241} a^{7} - \frac{337}{2241} a^{6} + \frac{628}{2241} a^{5} - \frac{500}{2241} a^{4} + \frac{65}{747} a^{3} + \frac{476}{2241} a^{2} - \frac{346}{747} a - \frac{995}{2241}$, $\frac{1}{6723} a^{19} + \frac{1}{6723} a^{18} - \frac{85}{6723} a^{17} - \frac{253}{6723} a^{16} - \frac{10}{81} a^{15} + \frac{44}{6723} a^{14} + \frac{340}{2241} a^{13} - \frac{296}{6723} a^{12} - \frac{1138}{6723} a^{11} - \frac{76}{2241} a^{10} - \frac{19}{2241} a^{9} + \frac{1901}{6723} a^{8} - \frac{251}{6723} a^{7} + \frac{86}{249} a^{6} - \frac{1135}{6723} a^{5} - \frac{887}{6723} a^{4} - \frac{103}{6723} a^{3} + \frac{1502}{6723} a^{2} + \frac{1183}{6723} a - \frac{1451}{6723}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6944.31732075 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.4.698137963227.1, 10.4.77570884803.1, 10.2.232712654409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||