Normalized defining polynomial
\( x^{20} + 100 x^{18} + 4250 x^{16} - 151 x^{15} + 100000 x^{14} - 11325 x^{13} + 1421875 x^{12} - 339750 x^{11} + 12538426 x^{10} - 5190625 x^{9} + 68327550 x^{8} - 42468750 x^{7} + 228935250 x^{6} - 182755451 x^{5} + 484303125 x^{4} - 439980025 x^{3} + 600406250 x^{2} - 725290750 x + 924979351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48544842802805942483246326446533203125=3^{10}\cdot 5^{35}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(525=3\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{525}(64,·)$, $\chi_{525}(1,·)$, $\chi_{525}(398,·)$, $\chi_{525}(272,·)$, $\chi_{525}(274,·)$, $\chi_{525}(211,·)$, $\chi_{525}(421,·)$, $\chi_{525}(188,·)$, $\chi_{525}(482,·)$, $\chi_{525}(484,·)$, $\chi_{525}(293,·)$, $\chi_{525}(167,·)$, $\chi_{525}(169,·)$, $\chi_{525}(106,·)$, $\chi_{525}(83,·)$, $\chi_{525}(503,·)$, $\chi_{525}(377,·)$, $\chi_{525}(379,·)$, $\chi_{525}(316,·)$, $\chi_{525}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10} + \frac{9}{41} a^{8} + \frac{14}{41} a^{6} - \frac{14}{41} a^{5} + \frac{18}{41} a^{4} + \frac{19}{41} a^{3} + \frac{4}{41} a^{2} + \frac{13}{41} a + \frac{9}{41}$, $\frac{1}{41} a^{11} + \frac{9}{41} a^{9} + \frac{14}{41} a^{7} - \frac{14}{41} a^{6} + \frac{18}{41} a^{5} + \frac{19}{41} a^{4} + \frac{4}{41} a^{3} + \frac{13}{41} a^{2} + \frac{9}{41} a$, $\frac{1}{41} a^{12} + \frac{15}{41} a^{8} - \frac{14}{41} a^{7} + \frac{15}{41} a^{6} - \frac{19}{41} a^{5} + \frac{6}{41} a^{4} + \frac{6}{41} a^{3} + \frac{14}{41} a^{2} + \frac{6}{41} a + \frac{1}{41}$, $\frac{1}{30479834641} a^{13} - \frac{34265820}{30479834641} a^{12} + \frac{65}{30479834641} a^{11} + \frac{174282603}{30479834641} a^{10} + \frac{1625}{30479834641} a^{9} - \frac{1654220940}{30479834641} a^{8} - \frac{5203854707}{30479834641} a^{7} + \frac{14646569665}{30479834641} a^{6} + \frac{113750}{30479834641} a^{5} - \frac{620780076}{30479834641} a^{4} + \frac{11151443390}{30479834641} a^{3} - \frac{1064194416}{30479834641} a^{2} - \frac{14124598294}{30479834641} a - \frac{14420410979}{30479834641}$, $\frac{1}{30479834641} a^{14} + \frac{70}{30479834641} a^{12} + \frac{171329100}{30479834641} a^{11} + \frac{1925}{30479834641} a^{10} + \frac{3475815692}{30479834641} a^{9} + \frac{26250}{30479834641} a^{8} + \frac{12273697563}{30479834641} a^{7} - \frac{4460279856}{30479834641} a^{6} + \frac{12052444098}{30479834641} a^{5} + \frac{10408360914}{30479834641} a^{4} - \frac{14729180642}{30479834641} a^{3} - \frac{8920161587}{30479834641} a^{2} - \frac{8781895834}{30479834641} a + \frac{156250}{30479834641}$, $\frac{1}{30479834641} a^{15} + \frac{339704697}{30479834641} a^{12} - \frac{2625}{30479834641} a^{11} + \frac{196960694}{30479834641} a^{10} - \frac{87500}{30479834641} a^{9} - \frac{7974976620}{30479834641} a^{8} - \frac{5205055457}{30479834641} a^{7} - \frac{7372889299}{30479834641} a^{6} - \frac{11158509015}{30479834641} a^{5} - \frac{6958284170}{30479834641} a^{4} + \frac{6671554784}{30479834641} a^{3} + \frac{9212507610}{30479834641} a^{2} - \frac{5961347308}{30479834641} a - \frac{9787165441}{30479834641}$, $\frac{1}{30479834641} a^{16} - \frac{3000}{30479834641} a^{12} - \frac{324937182}{30479834641} a^{11} - \frac{110000}{30479834641} a^{10} - \frac{206926692}{30479834641} a^{9} - \frac{1687500}{30479834641} a^{8} + \frac{10759239136}{30479834641} a^{7} - \frac{13393990818}{30479834641} a^{6} - \frac{12575223349}{30479834641} a^{5} + \frac{699660601}{30479834641} a^{4} - \frac{4458135037}{30479834641} a^{3} + \frac{3660803005}{30479834641} a^{2} - \frac{10418579948}{30479834641} a - \frac{11718750}{30479834641}$, $\frac{1}{30479834641} a^{17} + \frac{211676357}{30479834641} a^{12} + \frac{85000}{30479834641} a^{11} + \frac{23229805}{30479834641} a^{10} + \frac{3187500}{30479834641} a^{9} + \frac{2184664200}{30479834641} a^{8} - \frac{2927742404}{30479834641} a^{7} - \frac{2527038}{301780541} a^{6} - \frac{10110248414}{30479834641} a^{5} + \frac{14030457493}{30479834641} a^{4} + \frac{8230981010}{30479834641} a^{3} - \frac{154542528}{743410601} a^{2} + \frac{6544941058}{30479834641} a - \frac{8117349618}{30479834641}$, $\frac{1}{30479834641} a^{18} + \frac{102000}{30479834641} a^{12} - \frac{8642502}{743410601} a^{11} + \frac{4207500}{30479834641} a^{10} - \frac{7998056076}{30479834641} a^{9} + \frac{68850000}{30479834641} a^{8} + \frac{9135802227}{30479834641} a^{7} + \frac{13173480217}{30479834641} a^{6} - \frac{3671049892}{30479834641} a^{5} + \frac{13063659015}{30479834641} a^{4} + \frac{4050667063}{30479834641} a^{3} - \frac{2693717957}{30479834641} a^{2} - \frac{8238435206}{30479834641} a + \frac{531250000}{30479834641}$, $\frac{1}{30479834641} a^{19} - \frac{13937883}{30479834641} a^{12} - \frac{2422500}{30479834641} a^{11} - \frac{211754353}{30479834641} a^{10} - \frac{96900000}{30479834641} a^{9} - \frac{11561102369}{30479834641} a^{8} + \frac{6724016611}{30479834641} a^{7} + \frac{13831227521}{30479834641} a^{6} - \frac{8203178798}{30479834641} a^{5} + \frac{11797995499}{30479834641} a^{4} + \frac{6213972694}{30479834641} a^{3} - \frac{7276676418}{30479834641} a^{2} + \frac{627996828}{30479834641} a + \frac{8362070652}{30479834641}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{122}\times C_{122}$, which has order $238144$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.55125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |