Normalized defining polynomial
\( x^{20} + 820 x^{18} + 256250 x^{16} + 39237000 x^{14} + 3199197200 x^{12} + 143862932000 x^{10} + 3577377715000 x^{8} + 47512954140000 x^{6} + 312165040270000 x^{4} + 857751578200000 x^{2} + 787722016100000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4831623714907498679729543628551708670427136000000000000000=2^{55}\cdot 5^{15}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3280=2^{4}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3280}(1,·)$, $\chi_{3280}(961,·)$, $\chi_{3280}(1281,·)$, $\chi_{3280}(717,·)$, $\chi_{3280}(77,·)$, $\chi_{3280}(1837,·)$, $\chi_{3280}(1041,·)$, $\chi_{3280}(1813,·)$, $\chi_{3280}(409,·)$, $\chi_{3280}(2649,·)$, $\chi_{3280}(1437,·)$, $\chi_{3280}(1973,·)$, $\chi_{3280}(613,·)$, $\chi_{3280}(2409,·)$, $\chi_{3280}(237,·)$, $\chi_{3280}(1841,·)$, $\chi_{3280}(1333,·)$, $\chi_{3280}(2729,·)$, $\chi_{3280}(1849,·)$, $\chi_{3280}(213,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4}$, $\frac{1}{10} a^{5}$, $\frac{1}{10} a^{6}$, $\frac{1}{10} a^{7}$, $\frac{1}{300} a^{8} + \frac{1}{3}$, $\frac{1}{300} a^{9} + \frac{1}{3} a$, $\frac{1}{300} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{300} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3000} a^{12} + \frac{1}{30} a^{4}$, $\frac{1}{3000} a^{13} + \frac{1}{30} a^{5}$, $\frac{1}{3000} a^{14} + \frac{1}{30} a^{6}$, $\frac{1}{249000} a^{15} + \frac{1}{6225} a^{13} - \frac{1}{1660} a^{11} + \frac{37}{24900} a^{9} + \frac{23}{1245} a^{7} + \frac{2}{1245} a^{5} - \frac{11}{83} a^{3} + \frac{118}{249} a$, $\frac{1}{7470000} a^{16} + \frac{29}{249000} a^{14} - \frac{1}{49800} a^{12} + \frac{1}{6225} a^{10} - \frac{37}{74700} a^{8} - \frac{11}{1245} a^{6} - \frac{11}{2490} a^{4} - \frac{68}{249} a^{2} - \frac{1}{9}$, $\frac{1}{1247490000} a^{17} - \frac{23}{41583000} a^{15} + \frac{559}{5197875} a^{13} + \frac{87}{138610} a^{11} + \frac{104}{3118725} a^{9} - \frac{6149}{415830} a^{7} + \frac{8647}{207915} a^{5} - \frac{585}{13861} a^{3} + \frac{44506}{124749} a$, $\frac{1}{498200705358292688527962608259265557502332690000} a^{18} - \frac{6665442224355521766648823935341218119307}{99640141071658537705592521651853111500466538000} a^{16} + \frac{623628880968427335621019421426924307501137}{16606690178609756284265420275308851916744423000} a^{14} - \frac{2701800670229433792368528962189348345402447}{16606690178609756284265420275308851916744423000} a^{12} + \frac{536879500089369809108469710679896535367841}{1245501763395731721319906520648163893755831725} a^{10} + \frac{6442754229345946769289061841996848088803}{99640141071658537705592521651853111500466538} a^{8} + \frac{2478850165070442608433490120878428447921761}{83033450893048781421327101376544259583722115} a^{6} - \frac{1172524487270181448416468202058593280086237}{166066901786097562842654202753088519167444230} a^{4} - \frac{6980030148816171536935289846882944804954643}{49820070535829268852796260825926555750233269} a^{2} + \frac{1706598928187597118289811250403869875554}{3594262357393353210648312591149740693329}$, $\frac{1}{498200705358292688527962608259265557502332690000} a^{19} - \frac{45031234231948972649642556247953828403}{124550176339573172131990652064816389375583172500} a^{17} - \frac{2683515787704738121217641012140156915719}{8303345089304878142132710137654425958372211500} a^{15} + \frac{234539988206579760241550510937695312685927}{2767781696434959380710903379218141986124070500} a^{13} + \frac{6586432011738270451584544892789515897732679}{4982007053582926885279626082592655575023326900} a^{11} - \frac{2148045027649503360097611609730945540983067}{2491003526791463442639813041296327787511663450} a^{9} + \frac{1310470945874213918264922985606058370023431}{33213380357219512568530840550617703833488846} a^{7} + \frac{2659755399873868486646982130380004378057453}{55355633928699187614218067584362839722481410} a^{5} + \frac{4575523330203459035299035133663471524098092}{49820070535829268852796260825926555750233269} a^{3} + \frac{18302911730965425908936330925560393148165632}{49820070535829268852796260825926555750233269} a$
Class group and class number
$C_{2}\times C_{4}\times C_{2907751652}$, which has order $23262013216$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13054936686.08412 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{410}) \), 4.0.17643776000.8, 5.5.2825761.1, 10.10.33523910081941606400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||