Normalized defining polynomial
\( x^{20} - 2 x^{19} - 5 x^{18} + 6 x^{17} + 79 x^{16} - 66 x^{15} + 322 x^{14} - 536 x^{13} + 3374 x^{12} - 3100 x^{11} + 19969 x^{10} - 5580 x^{9} + 93762 x^{8} - 1416 x^{7} + 311223 x^{6} + 38138 x^{5} + 714780 x^{4} + 78782 x^{3} + 1041689 x^{2} + 24970 x + 767371 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(481817839414250422927360000000000=2^{30}\cdot 5^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(9,·)$, $\chi_{440}(331,·)$, $\chi_{440}(81,·)$, $\chi_{440}(339,·)$, $\chi_{440}(89,·)$, $\chi_{440}(201,·)$, $\chi_{440}(91,·)$, $\chi_{440}(361,·)$, $\chi_{440}(289,·)$, $\chi_{440}(291,·)$, $\chi_{440}(401,·)$, $\chi_{440}(169,·)$, $\chi_{440}(419,·)$, $\chi_{440}(49,·)$, $\chi_{440}(179,·)$, $\chi_{440}(59,·)$, $\chi_{440}(251,·)$, $\chi_{440}(379,·)$, $\chi_{440}(411,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43361} a^{18} + \frac{7482}{43361} a^{17} + \frac{10332}{43361} a^{16} + \frac{9729}{43361} a^{15} + \frac{15562}{43361} a^{14} + \frac{7160}{43361} a^{13} + \frac{14364}{43361} a^{12} - \frac{2665}{43361} a^{11} - \frac{15632}{43361} a^{10} - \frac{21553}{43361} a^{9} + \frac{20190}{43361} a^{8} + \frac{11543}{43361} a^{7} + \frac{11407}{43361} a^{6} + \frac{7194}{43361} a^{5} - \frac{11798}{43361} a^{4} - \frac{12640}{43361} a^{3} + \frac{7380}{43361} a^{2} + \frac{20507}{43361} a + \frac{13278}{43361}$, $\frac{1}{118423719626501019541955343687288493729454032137293} a^{19} + \frac{59448363528291919990537769284204803715535379}{118423719626501019541955343687288493729454032137293} a^{18} + \frac{8426745177794735997483119345663284920504375051887}{118423719626501019541955343687288493729454032137293} a^{17} - \frac{22097867806214740114443814997945843613211033070}{282634175719572839002280056532908099592969050447} a^{16} + \frac{39880604771278528752047721471692342555400007728412}{118423719626501019541955343687288493729454032137293} a^{15} + \frac{45811769977849404640252186408187846919884480492468}{118423719626501019541955343687288493729454032137293} a^{14} + \frac{52691518922449196555273573099499216853177552590168}{118423719626501019541955343687288493729454032137293} a^{13} - \frac{34612719316516362355881855242609531152960569056488}{118423719626501019541955343687288493729454032137293} a^{12} - \frac{19176119341538220875435172057707173808415435804292}{118423719626501019541955343687288493729454032137293} a^{11} - \frac{56186132104873574134245806039642472515443163734482}{118423719626501019541955343687288493729454032137293} a^{10} - \frac{33723610050575970938876532291736806644367948282745}{118423719626501019541955343687288493729454032137293} a^{9} - \frac{27005611904510293628284921734335646591521484433659}{118423719626501019541955343687288493729454032137293} a^{8} - \frac{24683967535824881085101312757868198805063801880031}{118423719626501019541955343687288493729454032137293} a^{7} - \frac{21961147173486309756368189899350977256059195778}{1330603591309000219572531951542567345274764406037} a^{6} - \frac{15245527884860725630624140157670200742832630775309}{118423719626501019541955343687288493729454032137293} a^{5} - \frac{27219053436320729117228447107426385323222599380068}{118423719626501019541955343687288493729454032137293} a^{4} - \frac{53400964005058629063691262902343010909016601882552}{118423719626501019541955343687288493729454032137293} a^{3} + \frac{31727130864551176909129348539122131054860396389971}{118423719626501019541955343687288493729454032137293} a^{2} + \frac{5582892269010578534295596320904133446568346198539}{118423719626501019541955343687288493729454032137293} a - \frac{51103056768034399879889172759212834612310783364168}{118423719626501019541955343687288493729454032137293}$
Class group and class number
$C_{5}\times C_{155}$, which has order $775$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.7024111812608.1, 10.0.21950349414400000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |